| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 
 | //
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
// GPMC to FIFO
//
// Reads frames from BRAM pages and writes them into FIFO interface.
// The GPMC is asynchronously alerted when a BRAM page is available.
//
// EM_CLK:
// A GPMC write transaction consists of one EM_CLK cycle (idle low).
//
// EM_WE:
// Write enable is actually the combination of ~NWE & ~NCS.
// The write enable is active for the entire transaction.
//
// EM_D:
// Data is set on the rising edge and written into BRAM on the falling edge.
//
// EM_A:
// Address is set on the rising edge and read by BRAM on the falling edge.
////////////////////////////////////////////////////////////////////////
module gpmc_to_fifo
  #(parameter PTR_WIDTH = 2, parameter ADDR_WIDTH = 10, parameter LAST_ADDR = 10'h3ff)
  (input [15:0] EM_D, input [ADDR_WIDTH:1] EM_A, input EM_CLK, input EM_WE,
   input clk, input reset, input clear, input arst,
   output [17:0] data_o, output src_rdy_o, input dst_rdy_i,
   output reg have_space);
    //states for the GPMC side of things
    reg gpmc_state;
    reg [ADDR_WIDTH:1] addr;
    reg [PTR_WIDTH:0] gpmc_ptr, next_gpmc_ptr;
    localparam GPMC_STATE_START = 0;
    localparam GPMC_STATE_FILL = 1;
    //states for the FIFO side of things
    reg [1:0] fifo_state;
    reg [ADDR_WIDTH-1:0] counter;
    reg [ADDR_WIDTH-1:0] last_counter;
    reg [ADDR_WIDTH-1:0] last_xfer;
    reg [PTR_WIDTH:0] fifo_ptr;
    localparam FIFO_STATE_CLAIM = 0;
    localparam FIFO_STATE_EMPTY = 1;
    localparam FIFO_STATE_PRE = 2;
    //------------------------------------------------------------------
    // State machine to control the data from GPMC to BRAM
    //------------------------------------------------------------------
    always @(negedge EM_CLK or posedge arst) begin
        if (arst) begin
            gpmc_state <= GPMC_STATE_START;
            gpmc_ptr <= 0;
            next_gpmc_ptr <= 0;
            addr <= 0;
        end
        else if (EM_WE) begin
            addr <= EM_A + 1;
            case(gpmc_state)
            GPMC_STATE_START: begin
                if (EM_A == 0) begin
                    gpmc_state <= GPMC_STATE_FILL;
                    next_gpmc_ptr <= gpmc_ptr + 1;
                end
            end
            GPMC_STATE_FILL: begin
                if (addr == LAST_ADDR) begin
                    gpmc_state <= GPMC_STATE_START;
                    gpmc_ptr <= next_gpmc_ptr;
                    addr <= 0;
                end
            end
            endcase //gpmc_state
        end //EM_WE
    end //always
    //------------------------------------------------------------------
    // A block ram is available to empty when the pointers dont match.
    //------------------------------------------------------------------
    wire [PTR_WIDTH:0] safe_gpmc_ptr;
    cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_gpmc_ptr
        (.clk(clk), .rst(reset | clear), .in(gpmc_ptr), .out(safe_gpmc_ptr));
    wire bram_available_to_empty = safe_gpmc_ptr != fifo_ptr;
    //------------------------------------------------------------------
    // Glich free generation of have space signal:
    // High when the fifo pointer has not caught up to the gpmc pointer.
    //------------------------------------------------------------------
    wire [PTR_WIDTH:0] safe_next_gpmc_ptr;
    cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_next_gpmc_ptr
        (.clk(clk), .rst(reset | clear), .in(next_gpmc_ptr), .out(safe_next_gpmc_ptr));
    wire [PTR_WIDTH:0] fifo_ptr_next = fifo_ptr + 1;
    always @(posedge clk)
        if (reset | clear) have_space <= 0;
        else               have_space <= (fifo_ptr ^ (1 << PTR_WIDTH)) != safe_next_gpmc_ptr;
    //------------------------------------------------------------------
    // State machine to control the data from BRAM to FIFO
    //------------------------------------------------------------------
    always @(posedge clk) begin
        if (reset | clear) begin
            fifo_state <= FIFO_STATE_CLAIM;
            fifo_ptr <= 0;
            counter <= 0;
        end
        else begin
            case(fifo_state)
            FIFO_STATE_CLAIM: begin
                if (bram_available_to_empty && data_o[16]) fifo_state <= FIFO_STATE_PRE;
                counter <= 0;
            end
            FIFO_STATE_PRE: begin
                fifo_state <= FIFO_STATE_EMPTY;
                counter <= counter + 1;
            end
            FIFO_STATE_EMPTY: begin
                if (src_rdy_o && dst_rdy_i && data_o[17]) begin
                    fifo_state <= FIFO_STATE_CLAIM;
                    fifo_ptr <= fifo_ptr + 1;
                    counter <= 0;
                end
                else if (src_rdy_o && dst_rdy_i) begin
                    counter <= counter + 1;
                end
            end
            endcase //fifo_state
        end
    end //always
    wire enable = (fifo_state != FIFO_STATE_EMPTY) || dst_rdy_i;
    assign src_rdy_o = fifo_state == FIFO_STATE_EMPTY;
    //instantiate dual ported bram for async read + write
    ram_2port #(.DWIDTH(16),.AWIDTH(PTR_WIDTH + ADDR_WIDTH)) async_fifo_bram
     (.clka(~EM_CLK),.ena(1'b1),.wea(EM_WE),
      .addra({gpmc_ptr[PTR_WIDTH-1:0], addr}),.dia(EM_D),.doa(),
      .clkb(clk),.enb(enable),.web(1'b0),
      .addrb({fifo_ptr[PTR_WIDTH-1:0], counter}),.dib(18'h3ffff),.dob(data_o[15:0]));
    //store the vita length -> last xfer count
    always @(posedge clk) begin
        if (src_rdy_o && dst_rdy_i && data_o[16]) begin
            last_xfer <= {data_o[ADDR_WIDTH-2:0], 1'b0};
        end
    end
    //logic for start and end of frame
    always @(posedge clk) if (enable) last_counter <= counter;
    assign data_o[17] = !data_o[16] && ((last_counter + 1'b1) == last_xfer);
    assign data_o[16] = last_counter == 0;
endmodule // gpmc_to_fifo
 |