1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
// Modified by M. Ettus, 2008 for 32 bit width
/////////////////////////////////////////////////////////////////////
//// ////
//// OpenCores Simple Programmable Interrupt Controller ////
//// ////
//// Author: Richard Herveille ////
//// richard@asics.ws ////
//// www.asics.ws ////
//// ////
/////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2002 Richard Herveille ////
//// richard@asics.ws ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer.////
//// ////
//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
//// POSSIBILITY OF SUCH DAMAGE. ////
//// ////
/////////////////////////////////////////////////////////////////////
//
// This is a simple Programmable Interrupt Controller.
// The number of interrupts is depending on the databus size.
// There's one interrupt input per databit (i.e. 16 interrupts for a 16
// bit databus).
// All attached devices share the same CPU priority level.
//
//
//
// Registers:
//
// 0x00: EdgeEnable Register
// bits 7:0 R/W Edge Enable '1' = edge triggered interrupt source
// '0' = level triggered interrupt source
// 0x01: PolarityRegister
// bits 7:0 R/W Polarity '1' = high level / rising edge
// '0' = low level / falling edge
// 0x02: MaskRegister
// bits 7:0 R/W Mask '1' = interrupt masked (disabled)
// '0' = interrupt not masked (enabled)
// 0x03: PendingRegister
// bits 7:0 R/W Pending '1' = interrupt pending
// '0' = no interrupt pending
//
// A CPU interrupt is generated when an interrupt is pending and its
// MASK bit is cleared.
//
//
//
// HOWTO:
//
// Clearing pending interrupts:
// Writing a '1' to a bit in the interrupt pending register clears the
// interrupt. Make sure to clear the interrupt at the source before
// writing to the interrupt pending register. Otherwise the interrupt
// will be set again.
//
// Priority based interrupts:
// Upon reception of an interrupt, check the interrupt register and
// determine the highest priority interrupt. Mask all interrupts from the
// current level to the lowest level. This negates the interrupt line, and
// makes sure only interrupts with a higher level are triggered. After
// completion of the interrupt service routine, clear the interrupt source,
// the interrupt bit in the pending register, and restore the MASK register
// to it's previous state.
//
// Addapt the core for fewer interrupt sources:
// If less than 8 interrupt sources are required, than the 'is' parameter
// can be set to the amount of required interrupts. Interrupts are mapped
// starting at the LSBs. So only the 'is' LSBs per register are valid. All
// other bits (i.e. the 8-'is' MSBs) are set to zero '0'.
// Codesize is approximately linear to the amount of interrupts. I.e. using
// 4 instead of 8 interrupt sources reduces the size by approx. half.
//
module simple_pic(
clk_i, rst_i, cyc_i, stb_i, adr_i, we_i, dat_i, dat_o, ack_o, int_o,
irq
);
parameter is = 8; // Number of interrupt sources
parameter dwidth = 32;
//
// Inputs & outputs
//
// 8bit WISHBONE bus slave interface
input clk_i; // clock
input rst_i; // reset (asynchronous active low)
input cyc_i; // cycle
input stb_i; // strobe (cycle and strobe are the same signal)
input [ 2:1] adr_i; // address
input we_i; // write enable
input [ dwidth-1:0] dat_i; // data output
output [ dwidth-1:0] dat_o; // data input
output ack_o; // normal bus termination
output int_o; // interrupt output
//
// Interrupt sources
//
input [is:1] irq; // interrupt request inputs
//
// Module body
//
reg [is:1] pol, edgen, pending, mask; // register bank
reg [is:1] lirq, dirq; // latched irqs, delayed latched irqs
//
// perform parameter checks
//
// synopsys translate_off
initial
begin
if(is > dwidth)
$display("simple_pic: max number of interrupts = data bus width.");
end
// synopsys translate_on
//
// latch interrupt inputs
always @(posedge clk_i)
lirq <= #1 irq;
//
// generate delayed latched irqs
always @(posedge clk_i)
dirq <= #1 lirq;
//
// generate actual triggers
function trigger;
input edgen, pol, lirq, dirq;
reg edge_irq, level_irq;
begin
edge_irq = pol ? (lirq & ~dirq) : (dirq & ~lirq);
level_irq = pol ? lirq : ~lirq;
trigger = edgen ? edge_irq : level_irq;
end
endfunction
reg [is:1] irq_event;
integer n;
always @(posedge clk_i)
for(n=1; n<=is; n=n+1)
irq_event[n] <= #1 trigger(edgen[n], pol[n], lirq[n], dirq[n]);
//
// generate wishbone register bank writes
wire wb_acc = cyc_i & stb_i; // WISHBONE access
wire wb_wr = wb_acc & we_i; // WISHBONE write access
always @(posedge clk_i)
if (rst_i)
begin
pol <= #1 {is{1'b0}}; // clear polarity register
edgen <= #1 {is{1'b0}}; // clear edge enable register
mask <= #1 {is{1'b1}}; // mask all interrupts
end
else if(wb_wr) // wishbone write cycle??
case (adr_i) // synopsys full_case parallel_case
2'b00: edgen <= #1 dat_i[is-1:0]; // EDGE-ENABLE register
2'b01: pol <= #1 dat_i[is-1:0]; // POLARITY register
2'b10: mask <= #1 dat_i[is-1:0]; // MASK register
2'b11: ; // PENDING register is a special case (see below)
endcase
// pending register is a special case
always @(posedge clk_i)
if (rst_i)
pending <= #1 {is{1'b0}}; // clear all pending interrupts
else if ( wb_wr & (&adr_i) )
pending <= #1 (pending & ~dat_i[is-1:0]) | irq_event;
else
pending <= #1 pending | irq_event;
//
// generate dat_o
reg [dwidth-1:0] dat_o;
always @(posedge clk_i)
case (adr_i) // synopsys full_case parallel_case
2'b00: dat_o <= #1 { {(dwidth-is){1'b0}}, edgen};
2'b01: dat_o <= #1 { {(dwidth-is){1'b0}}, pol};
2'b10: dat_o <= #1 { {(dwidth-is){1'b0}}, mask};
2'b11: dat_o <= #1 { {(dwidth-is){1'b0}}, pending};
endcase
//
// generate ack_o
reg ack_o;
always @(posedge clk_i)
ack_o <= #1 wb_acc & !ack_o;
//
// generate CPU interrupt signal
reg int_o;
always @(posedge clk_i)
if(rst_i)
int_o <= #1 0;
else
int_o <= #1 |(pending & ~mask);
endmodule
|