1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
module axi_dram_fifo_tb;
reg clk; // Global AXI clock
reg reset; // Global reset, active high.
reg clear;
wire aresetn; // Global AXI reset, active low.
//
// AXI Write address channel
//
wire [0 : 0] axi_awid; // Write address ID. This signal is the identification tag for the write address signals
wire [31 : 0] axi_awaddr; // Write address. The write address gives the address of the first transfer in a write burst
wire [7 : 0] axi_awlen; // Burst length. The burst length gives the exact number of transfers in a burst.
wire [2 : 0] axi_awsize; // Burst size. This signal indicates the size of each transfer in the burst.
wire [1 : 0] axi_awburst; // Burst type. The burst type and the size information, determine how the address is calculated
wire [0 : 0] axi_awlock; // Lock type. Provides additional information about the atomic characteristics of the transfer.
wire [3 : 0] axi_awcache; // Memory type. This signal indicates how transactions are required to progress
wire [2 : 0] axi_awprot; // Protection type. This signal indicates the privilege and security level of the transaction
wire [3 : 0] axi_awqos; // Quality of Service, QoS. The QoS identifier sent for each write transaction
wire [3 : 0] axi_awregion; // Region identifier. Permits a single physical interface on a slave to be re-used.
wire [0 : 0] axi_awuser; // User signal. Optional User-defined signal in the write address channel.
wire axi_awvalid; // Write address valid. This signal indicates that the channel is signaling valid write addr
wire axi_awready; // Write address ready. This signal indicates that the slave is ready to accept an address
//
// AXI Write data channel.
//
wire [63 : 0] axi_wdata; // Write data
wire [7 : 0] axi_wstrb; // Write strobes. This signal indicates which byte lanes hold valid data.
wire axi_wlast; // Write last. This signal indicates the last transfer in a write burst
wire [0 : 0] axi_wuser; // User signal. Optional User-defined signal in the write data channel.
wire axi_wvalid; // Write valid. This signal indicates that valid write data and strobes are available.
wire axi_wready; // Write ready. This signal indicates that the slave can accept the write data.
//
// AXI Write response channel signals
//
wire [0 : 0] axi_bid; // Response ID tag. This signal is the ID tag of the write response.
wire [1 : 0] axi_bresp; // Write response. This signal indicates the status of the write transaction.
wire [0 : 0] axi_buser; // User signal. Optional User-defined signal in the write response channel.
wire axi_bvalid; // Write response valid. This signal indicates that the channel is signaling a valid response
wire axi_bready; // Response ready. This signal indicates that the master can accept a write response
//
// AXI Read address channel
//
wire [0 : 0] axi_arid; // Read address ID. This signal is the identification tag for the read address group of signals
wire [31 : 0] axi_araddr; // Read address. The read address gives the address of the first transfer in a read burst
wire [7 : 0] axi_arlen; // Burst length. This signal indicates the exact number of transfers in a burst.
wire [2 : 0] axi_arsize; // Burst size. This signal indicates the size of each transfer in the burst.
wire [1 : 0] axi_arburst; // Burst type. The burst type and the size information determine how the address for each transfer
wire [0 : 0] axi_arlock; // Lock type. This signal provides additional information about the atomic characteristics
wire [3 : 0] axi_arcache; // Memory type. This signal indicates how transactions are required to progress
wire [2 : 0] axi_arprot; // Protection type. This signal indicates the privilege and security level of the transaction
wire [3 : 0] axi_arqos; // Quality of Service, QoS. QoS identifier sent for each read transaction.
wire [3 : 0] axi_arregion; // Region identifier. Permits a single physical interface on a slave to be re-used
wire [0 : 0] axi_aruser; // User signal. Optional User-defined signal in the read address channel.
wire axi_arvalid; // Read address valid. This signal indicates that the channel is signaling valid read addr
wire axi_arready; // Read address ready. This signal indicates that the slave is ready to accept an address
//
// AXI Read data channel
//
wire [0 : 0] axi_rid; // Read ID tag. This signal is the identification tag for the read data group of signals
wire [63 : 0] axi_rdata; // Read data.
wire [1 : 0] axi_rresp; // Read response. This signal indicates the status of the read transfer
wire axi_rlast; // Read last. This signal indicates the last transfer in a read burst.
wire [0 : 0] axi_ruser; // User signal. Optional User-defined signal in the read data channel.
wire axi_rvalid; // Read valid. This signal indicates that the channel is signaling the required read data.
wire axi_rready; // Read ready. This signal indicates that the master can accept the read data and response
//
// CHDR friendly AXI stream input
//
wire [63:0] i_tdata;
wire i_tlast;
wire i_tvalid;
wire i_tready;
//
// CHDR friendly AXI Stream output
//
wire [63:0] o_tdata;
wire o_tlast;
wire o_tvalid;
wire o_tready;
//
// These registers optionaly used
// to drive nets through procedural assignments in test bench.
// These drivers default to tri-stated.
//
reg [63:0] i_tdata_r;
reg i_tlast_r;
reg i_tvalid_r;
reg o_tready_r;
assign i_tdata = i_tdata_r;
assign i_tlast = i_tlast_r;
assign i_tvalid = i_tvalid_r;
assign o_tready = o_tready_r;
initial
begin
i_tdata_r <= 64'hzzzz_zzzz_zzzz_zzzz;
i_tlast_r <= 1'bz;
i_tvalid_r <= 1'bz;
o_tready_r <= 1'bz;
end
axi_dram_fifo
#(.SIZE(13))
axi_dram_fifo_i1
(
.bus_clk(clk), // input s_aclk
.bus_reset(reset), // input s_aresetn
.clear(clear),
.dram_clk(clk), // input s_aclk
.dram_reset(reset), // input s_aresetn
// Write control
.m_axi_awid(axi_awid), // input [0 : 0] s_axi_awid
.m_axi_awaddr(axi_awaddr), // input [31 : 0] s_axi_awaddr
.m_axi_awlen(axi_awlen), // input [7 : 0] s_axi_awlen
.m_axi_awsize(axi_awsize), // input [2 : 0] s_axi_awsize
.m_axi_awburst(axi_awburst), // input [1 : 0] s_axi_awburst
.m_axi_awvalid(axi_awvalid), // input s_axi_awvalid
.m_axi_awready(axi_awready), // output s_axi_awready
.m_axi_awlock(),
.m_axi_awcache(),
.m_axi_awprot(),
.m_axi_awqos(),
.m_axi_awregion(),
.m_axi_awuser(),
// Write Data
.m_axi_wdata(axi_wdata), // input [63 : 0] s_axi_wdata
.m_axi_wstrb(axi_wstrb), // input [7 : 0] s_axi_wstrb
.m_axi_wlast(axi_wlast), // input s_axi_wlast
.m_axi_wvalid(axi_wvalid), // input s_axi_wvalid
.m_axi_wready(axi_wready), // output s_axi_wready
.m_axi_wuser(),
// Write Response
.m_axi_bid(axi_bid), // output [0 : 0] s_axi_bid
.m_axi_bresp(axi_bresp), // output [1 : 0] s_axi_bresp
.m_axi_bvalid(axi_bvalid), // output s_axi_bvalid
.m_axi_bready(axi_bready), // input s_axi_bready
.m_axi_buser(),
// Read Control
.m_axi_arid(axi_arid), // input [0 : 0] s_axi_arid
.m_axi_araddr(axi_araddr), // input [31 : 0] s_axi_araddr
.m_axi_arlen(axi_arlen), // input [7 : 0] s_axi_arlen
.m_axi_arsize(axi_arsize), // input [2 : 0] s_axi_arsize
.m_axi_arburst(axi_arburst), // input [1 : 0] s_axi_arburst
.m_axi_arvalid(axi_arvalid), // input s_axi_arvalid
.m_axi_arready(axi_arready), // output s_axi_arready
.m_axi_arlock(),
.m_axi_arcache(),
.m_axi_arprot(),
.m_axi_arqos(),
.m_axi_arregion(),
.m_axi_aruser(),
// Read Data
.m_axi_rid(axi_rid), // output [0 : 0] s_axi_rid
.m_axi_rdata(axi_rdata), // output [63 : 0] s_axi_rdata
.m_axi_rresp(axi_rresp), // output [1 : 0] s_axi_rresp
.m_axi_rlast(axi_rlast), // output s_axi_rlast
.m_axi_rvalid(axi_rvalid), // output s_axi_rvalid
.m_axi_rready(axi_rready), // input s_axi_rready
.m_axi_ruser(),
// CHDR in
.i_tdata(i_tdata),
.i_tlast(i_tlast),
.i_tvalid(i_tvalid),
.i_tready(i_tready),
// CHDR out
.o_tdata(o_tdata),
.o_tlast(o_tlast),
.o_tvalid(o_tvalid),
.o_tready(o_tready),
//
.supress_threshold(16'h0),
.supress_enable(1'b0)
);
axi4_bram_1kx64 axi4_bram_1kx64_i1
(
.s_aclk(clk), // input s_aclk
.s_aresetn(aresetn), // input s_aresetn
.s_axi_awid(axi_awid), // input [0 : 0] s_axi_awid
.s_axi_awaddr(axi_awaddr), // input [31 : 0] s_axi_awaddr
.s_axi_awlen(axi_awlen), // input [7 : 0] s_axi_awlen
.s_axi_awsize(axi_awsize), // input [2 : 0] s_axi_awsize
.s_axi_awburst(axi_awburst), // input [1 : 0] s_axi_awburst
.s_axi_awvalid(axi_awvalid), // input s_axi_awvalid
.s_axi_awready(axi_awready), // output s_axi_awready
.s_axi_wdata(axi_wdata), // input [63 : 0] s_axi_wdata
.s_axi_wstrb(axi_wstrb), // input [7 : 0] s_axi_wstrb
.s_axi_wlast(axi_wlast), // input s_axi_wlast
.s_axi_wvalid(axi_wvalid), // input s_axi_wvalid
.s_axi_wready(axi_wready), // output s_axi_wready
.s_axi_bid(axi_bid), // output [0 : 0] s_axi_bid
.s_axi_bresp(axi_bresp), // output [1 : 0] s_axi_bresp
.s_axi_bvalid(axi_bvalid), // output s_axi_bvalid
.s_axi_bready(axi_bready), // input s_axi_bready
.s_axi_arid(axi_arid), // input [0 : 0] s_axi_arid
.s_axi_araddr(axi_araddr), // input [31 : 0] s_axi_araddr
.s_axi_arlen(axi_arlen), // input [7 : 0] s_axi_arlen
.s_axi_arsize(axi_arsize), // input [2 : 0] s_axi_arsize
.s_axi_arburst(axi_arburst), // input [1 : 0] s_axi_arburst
.s_axi_arvalid(axi_arvalid), // input s_axi_arvalid
.s_axi_arready(axi_arready), // output s_axi_arready
.s_axi_rid(axi_rid), // output [0 : 0] s_axi_rid
.s_axi_rdata(axi_rdata), // output [63 : 0] s_axi_rdata
.s_axi_rresp(axi_rresp), // output [1 : 0] s_axi_rresp
.s_axi_rlast(axi_rlast), // output s_axi_rlast
.s_axi_rvalid(axi_rvalid), // output s_axi_rvalid
.s_axi_rready(axi_rready) // input s_axi_rready
);
//
//
//
task send_ramp;
input [31:0] burst_count;
input [31:0] len;
input [31:0] sid;
reg [31:0] data;
reg [11:0] seqno;
begin
seqno = 0;
data = 0;
send_packet(len, data, 0, seqno, (burst_count==1), 0, sid);
seqno = seqno + 1;
data <= data + len;
if(burst_count > 2)
repeat (burst_count - 2)
begin
send_packet(len, data, 64'h0, seqno, 0, 0, sid);
seqno = seqno + 1;
data <= data + len;
end
if(burst_count > 1)
send_packet(len, data, 64'h0, seqno, 1, 0, sid);
end
endtask // send_ramp
task send_dc;
input [31:0] burst_count;
input [31:0] len;
input [31:0] sid;
reg [31:0] data;
reg [11:0] seqno;
begin
seqno = 0;
data = 1 << 14;
send_packet(len, data, 0, seqno, (burst_count==1), 0, sid);
seqno = seqno + 1;
if(burst_count > 2)
repeat (burst_count - 2)
begin
send_packet(len, data, 64'h0, seqno, 0, 0, sid);
seqno = seqno + 1;
end
if(burst_count > 1)
send_packet(len, data, 64'h0, seqno, 1, 0, sid);
end
endtask // send_ramp
task send_burst;
input [31:0] burst_count;
input [31:0] len;
input [31:0] start_data;
input [63:0] send_time;
input [11:0] start_seqnum;
input send_at;
input [31:0] sid;
reg [11:0] seqno;
begin
seqno = start_seqnum;
send_packet(len, {seqno,start_data[15:0]}, send_time, seqno, (burst_count==1), send_at, sid);
seqno = seqno + 1;
if(burst_count > 2)
repeat (burst_count - 2)
begin
send_packet(len, {seqno,start_data[15:0]}, 64'h0, seqno, 0, 0, sid);
seqno = seqno + 1;
end
if(burst_count > 1)
send_packet(len, {seqno,start_data[15:0]}, 64'h0, seqno, 1, 0, sid);
end
endtask // send_burst
task send_packet;
input [31:0] len;
input [31:0] start_data;
input [63:0] send_time;
input [11:0] pkt_seqnum;
input eob;
input send_at;
input [31:0] sid;
reg [31:0] samp0, samp1;
begin
// Send a packet
samp0 <= start_data;
samp1 <= start_data + 1;
@(posedge clk);
i_tlast_r <= 0;
i_tdata_r <= { 1'b0, 1'b0 /*trl*/, send_at, eob, pkt_seqnum, len[15:0]+16'd2+send_at+send_at, sid };
i_tvalid_r <= 1;
@(posedge clk)
if(send_at)
begin
i_tdata_r <= send_time;
@(posedge clk);
end
repeat (len[31:1]+len[0]-1)
begin
i_tdata_r <= {samp0,samp1};
samp0 <= samp0 + 2;
samp1 <= samp1 + 2;
@(posedge clk);
end
i_tdata_r <= {samp0,samp1};
i_tlast_r <= 1'b1;
@(posedge clk);
i_tvalid_r <= 0;
@(posedge clk);
end
endtask // send_packet
task send_raw_packet;
input [31:0] len;
reg [63:0] data;
begin
data = 0;
@(posedge clk);
repeat (len-1) begin
i_tlast_r <= 0;
i_tdata_r <= data;
i_tvalid_r <= 1;
@(posedge clk);
while (~i_tready) @(posedge clk);
data = data + 1;
end
i_tlast_r <= 1;
i_tdata_r <= data;
i_tvalid_r <= 1;
@(posedge clk);
while (~i_tready) @(posedge clk);
i_tvalid_r <= 0;
@(posedge clk);
end
endtask // send_raw_packet
task receive_raw_packet;
input [31:0] len;
output fail;
reg [63:0] data;
begin
data = 0;
fail = 0;
@(posedge clk);
repeat (len-1) begin
o_tready_r <= 1;
@(posedge clk);
while (~o_tvalid) @(posedge clk);
//$display("Data = %d, o_tdata = %d, o_tlast = %d",data,o_tdata,o_tlast);
fail = fail || (data !== o_tdata);
fail = fail || ~(o_tlast === 0);
data = data + 1;
end
o_tready_r <= 1;
@(posedge clk);
while (~o_tvalid) @(posedge clk);
//$display("Data = %d, o_tdata = %d, o_tlast = %d",data,o_tdata,o_tlast);
fail = fail || (data !== o_tdata);
fail = fail || ~(o_tlast === 1);
o_tready_r <= 0;
@(posedge clk);
if (fail) $display("receive_raw_packet size %d failed",len);
end
endtask // receive_raw_packet
assign aresetn = ~reset;
//
// Bring in a simulation script here
//
`include "simulation_script.v"
endmodule // axi_dram_fifo_tb
|