1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
// All code take from the HDLCon paper:
// "Verilog Transcendental Functions for Numerical Testbenches"
//
// Authored by:
// Mark G. Arnold marnold@co.umist.ac.uk,
// Colin Walter c.walter@co.umist.ac.uk
// Freddy Engineer freddy.engineer@xilinx.com
//
// The sine function is approximated with a polynomial which works
// for -π/2 < x < π/2. (This polynomial, by itself, was used as a
// Verilog example in [2]; unfortunately there was a typo with the
// coefficients. The correct coefficients together with an error
// analysis are given in [3].) For arguments outside of -π/2 < x < π/2,
// the identities sin(x) = -sin(-x) and sin(x) = -sin(x-π) allow the
// argument to be shifted to be within this range. The latter identity
// can be applied repeatedly. Doing so could cause inaccuracies for
// very large arguments, but in practice the errors are acceptable
// if the Verilog simulator uses double-precision floating point.
function real sin;
input x;
real x;
real x1,y,y2,y3,y5,y7,sum,sign;
begin
sign = 1.0;
x1 = x;
if (x1<0)
begin
x1 = -x1;
sign = -1.0;
end
while (x1 > 3.14159265/2.0)
begin
x1 = x1 - 3.14159265;
sign = -1.0*sign;
end
y = x1*2/3.14159265;
y2 = y*y;
y3 = y*y2;
y5 = y3*y2;
y7 = y5*y2;
sum = 1.570794*y - 0.645962*y3 +
0.079692*y5 - 0.004681712*y7;
sin = sign*sum;
end
endfunction
// The cosine and tangent are computed from the sine:
function real cos;
input x;
real x;
begin
cos = sin(x + 3.14159265/2.0);
end
endfunction
function real tan;
input x;
real x;
begin
tan = sin(x)/cos(x);
end
endfunction
// The base-two exponential (antilogarithm) function, 2x, is computed by
// examining the bits of the argument, and for those bits of the argument
// that are 1, multiplying the result by the corresponding power of a base
// very close to one. For example, if there were only two bits after
// the radix point, the base would be the fourth root of two, 1.1892.
// This number is squared on each iteration: 1.4142, 2.0, 4.0, 16.0.
// So, if x is 101.112, the function computes 25.75 as 1.1892*1.4142*2.0*16.0 = 53.81.
// In general, for k bits of precision, the base would be the 2k root of two.
// Since we need about 23 bits of accuracy for our function, the base we use
// is the 223 root of two, 1.000000082629586. This constant poses a problem
// to some Verilog parsers, so we construct it in two parts. The following
// function computes the appropriate root of two by repeatedly squaring this constant:
function real rootof2;
input n;
integer n;
real power;
integer i;
begin
power = 0.82629586;
power = power / 10000000.0;
power = power + 1.0;
i = -23;
if (n >= 1)
begin
power = 2.0;
i = 0;
end
for (i=i; i< n; i=i+1)
begin
power = power * power;
end
rootof2 = power;
end
endfunction // if
// This function is used for computing both antilogarithms and logarithms.
// This routine is never called with n less than -23, thus no validity check
// need be performed. When n>0, the exponentiation begins with 2.0 in order to
// improve accuracy.
// For computing the antilogarithm, we make use of the identity ex = 2x/ln(2),
// and then proceed as in the example above. The constant 1/ln(2) = 1.44269504.
// Here is the natural exponential function:
function real exp;
input x;
real x;
real x1,power,prod;
integer i;
begin
x1 = fabs(x)*1.44269504;
if (x1 > 255.0)
begin
exp = 0.0;
if (x>0.0)
begin
$display("exp illegal argument:",x);
$stop;
end
end
else
begin
prod = 1.0;
power = 128.0;
for (i=7; i>=-23; i=i-1)
begin
if (x1 > power)
begin
prod = prod * rootof2(i);
x1 = x1 - power;
end
power = power / 2.0;
end
if (x < 0)
exp = 1.0/prod;
else
exp = prod;
end
end
endfunction // fabs
// The function prints an error message if the argument is too large
// (greater than about 180). All error messages in this package are
// followed by $stop to allow the designer to use the debugging
// features of Verilog to determine the cause of the error, and
// possibly to resume the simulation. An argument of less than
// about –180 simply returns zero with no error. The main loop
// assumes a positive argument. A negative argument is computed as 1/e-x.
// The logarithm function prints an error message for arguments less
// than or equal to zero because the real-valued logarithm is not
// defined for such arguments. The loop here requires an argument
// greater than or equal to one. For arguments between zero and one,
// this code uses the identity ln(1/x) = -ln(x).
function real log;
input x;
real x;
real re,log2;
integer i;
begin
if (x <= 0.0)
begin
$display("log illegal argument:",x);
$stop;
log = 0;
end
else
begin
if (x<1.0)
re = 1.0/x;
else
re = x;
log2 = 0.0;
for (i=7; i>=-23; i=i-1)
begin
if (re > rootof2(i))
begin
re = re/rootof2(i);
log2 = 2.0*log2 + 1.0;
end
else
log2 = log2*2;
end
if (x < 1.0)
log = -log2/12102203.16;
else
log = log2/12102203.16;
end
end
endfunction
// The code only divides re by rootof2(i) when the re is larger
// (so that the quotient will be greater than 1.0). Each time
// such a division occurs, a bit that is 1 is recorded in the
// whole number result (multiply by 2 and add 1). Otherwise,
// a zero is recorded (multiply by 2). At the end of the loop,
// log2 will contain 223 log2|x|. We divide by 223 and use the
// identity ln(x) = log2(x)/log2(e). The constant 12102203.16 is 223 log2(e).
// The log(x) and exp(x)functions are used to implement the pow(x,y) and sqrt(x) functions:
function real pow;
input x,y;
real x,y;
begin
if (x<0.0)
begin
$display("pow illegal argument:",x);
$stop;
end
pow = exp(y*log(x));
end
endfunction
function real sqrt;
input x;
real x;
begin
if (x<0.0)
begin
$display("sqrt illegal argument:",x);
$stop;
end
sqrt = exp(0.5*log(x));
end
endfunction
// The arctangent [3,7] is computed as a continued fraction,
// using the identities tan-1(x) = -tan-1(-x) and tan-1(x) = π/2 - tan-1(1/x)
// to reduce the range to 0 < x < 1:
function real atan;
input x;
real x;
real x1,x2,sign,bias;
real d3,s3;
begin
sign = 1.0;
bias = 0.0;
x1 = x;
if (x1 < 0.0)
begin
x1 = -x1;
sign = -1.0;
end
if (x1 > 1.0)
begin
x1 = 1.0/x1;
bias = sign*3.14159265/2.0;
sign = -1.0*sign;
end
x2 = x1*x1;
d3 = x2 + 1.44863154;
d3 = 0.26476862 / d3;
s3 = x2 + 3.3163354;
d3 = s3 - d3;
d3 = 7.10676 / d3;
s3 = 6.762139 + x2;
d3 = s3 - d3;
d3 = 3.7092563 / d3;
d3 = d3 + 0.17465544;
atan = sign*x1*d3+bias;
end
endfunction
// The other functions (asin(x) and acos(x)) are computed from the arctangent.
|