1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
//
// Copyright 2013 Ettus Research LLC
//
//
// This module implements a highly customized TCAM that enbales forwarding
// decisions to be made on a 16bit field from a VITA SID field.
// The 16bits are allocated by convention as 8 bits of Network address
// (Addresses USRP's etc) and 8 bits of Host address (adresses endpoints in
// a USRP). By definition if the DEST field in the SID addresses a different
// USRP than this one then we don't care about the Host field, only the Network Field.
// We only look at the Host Field when the Network field addresses us.
// Thus Need TCAM of 256+256 entries with Log2(N) bits, where N is the number of
// slave(output) ports on the crossbar switch.
//
//
//
// SID format:
//
// |--------|---------|--------|---------|
// | SOURCE | DEST | DEST |
// | ADDRESS | NETWORK| HOST |
// |--------|---------|--------|---------|
// 8 8 8 8
//
`define LOG2(N) (\
N < 2 ? 0 : \
N < 4 ? 1 : \
N < 8 ? 2 : \
N < 16 ? 3 : \
N < 32 ? 4 : \
N < 64 ? 5 : \
N < 128 ? 6 : \
N < 256 ? 7 : \
N < 512 ? 8 : \
N < 1024 ? 9 : \
10)
module axi_forwarding_cam
#(
parameter BASE = 0, // BASE address for setting registers in this block. (512 addrs used)
parameter WIDTH=64, // Bit width of FIFO word.
parameter NUM_OUTPUTS=2 // Number of outputs (destinations) in crossbar.
)
(
input clk,
input reset,
input clear,
// Monitored FIFO signals
input [WIDTH-1:0] o_tdata,
input o_tvalid,
input o_tready,
input o_tlast,
input pkt_present,
// Configuration
input [7:0] local_addr,
// Setting Bus
input set_stb,
input [15:0] set_addr,
input [31:0] set_data,
// Forwarding Flags
output reg [NUM_OUTPUTS-1:0] forward_valid,
input [NUM_OUTPUTS-1:0] forward_ack,
// readback bus
input rb_rd_stb,
input [`LOG2(NUM_OUTPUTS):0] rb_addr,
output [31:0] rb_data
);
localparam WAIT_SOF = 0;
localparam WAIT_EOF = 1;
reg state;
localparam IDLE = 0;
localparam FORWARD = 1;
localparam WAIT = 2;
reg [1:0] demux_state;
reg [15:0] dst;
reg dst_valid, dst_valid_reg;
wire local_dst;
wire [8:0] read_addr;
//
// Monitor packets leaving FIFO
//
always @(posedge clk)
if (reset | clear) begin
state <= WAIT_SOF;
end else
case(state)
//
// After RESET or the EOF of previous packet, the first cycle with
// output valid asserted is the SOF and presents the Header word.
// The cycle following the concurrent presentation of asserted output
// valid and output ready presents the word following the header.
//
WAIT_SOF:
if (o_tvalid && o_tready) begin
state <= WAIT_EOF;
end else begin
state <= WAIT_SOF;
end
//
// EOF is signalled by o_tlast asserted whilst output valid and ready asserted.
//
WAIT_EOF:
if (o_tlast && o_tvalid && o_tready) begin
state <= WAIT_SOF;
end else begin
state <= WAIT_EOF;
end
endcase // case(in_state)
//
// Extract Destination fields(s) from SID
//
always @(posedge clk)
if (reset | clear) begin
dst <= 0;
dst_valid <= 0;
dst_valid_reg <= 0;
end else if (o_tvalid && (state == WAIT_SOF) && pkt_present) begin
// SID will remain valid until o_tready is asserted as this will cause a state transition.
dst <= o_tdata[15:0];
dst_valid <= 1;
dst_valid_reg <= dst_valid;
end else begin
dst_valid <= 0;
dst_valid_reg <= dst_valid;
end
//
// Is Network field in DST our local address?
//
assign local_dst = (dst[15:8] == local_addr) && dst_valid;
//
// Mux address to RAM so that it searches CAM for Network field or Host field.
// Network addresses are stored in the lower 256 locations, host addresses the upper 256.
//
assign read_addr = {local_dst,(local_dst ? dst[7:0] : dst[15:8])};
//
// Imply a block RAM here, 512xCeil(Log2(NUM_OUTPUTS))
//
//synthesis attribute ram_style of mem is block
reg [(`LOG2(NUM_OUTPUTS)) : 0] mem [0:511];
reg [8:0] read_addr_reg;
wire write;
wire [`LOG2(NUM_OUTPUTS):0] read_data;
assign write = (set_addr[15:9] == (BASE >>9)) && set_stb; // Addr decode.
always @(posedge clk)
begin
read_addr_reg <= read_addr;
if (write) begin
mem[set_addr[8:0]] <= set_data[`LOG2(NUM_OUTPUTS):0];
end
end
assign read_data = mem[read_addr_reg];
//
// State machine to manage forwarding flags.
//
always @(posedge clk)
if (reset | clear) begin
forward_valid <= {NUM_OUTPUTS{1'b0}};
demux_state <= IDLE;
end else
case(demux_state)
// Wait for Valid DST which indicates a new packet lookup in the CAM.
IDLE: begin
if (dst_valid_reg == 1) begin
forward_valid <= 1'b1 << read_data;
demux_state <= FORWARD;
end
end
// When Slave/Output thats forwarding ACK's the forward flag, clear request and wait for packet to be transfered
FORWARD: begin
if ((forward_ack & forward_valid) != 0) begin
forward_valid <= {NUM_OUTPUTS{1'b0}};
demux_state <= WAIT;
end
end
// When packet transfered go back to idle.
WAIT: begin
if (forward_ack == 0)
demux_state <= IDLE;
end
endcase // case (demux_state)
//
// Compile forwarding statistics
// (This uses a lot of registers!)
//
genvar m;
reg [31:0] statistics [0:NUM_OUTPUTS-1];
generate
for (m = 0; m < NUM_OUTPUTS; m = m + 1) begin: generate_stats
always @(posedge clk)
if (reset | clear)
statistics[m] <= 0;
else if ((rb_addr == m) && rb_rd_stb)
statistics[m] <= 0;
else if (forward_ack[m] & forward_valid[m])
statistics[m] <= statistics[m] + 1;
end
endgenerate
assign rb_data = statistics[rb_addr];
endmodule
|