1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
//
// Copyright 2011-2013 Ettus Research LLC
//
//! X300/X310 digital down-conversion chain
module ddc_chain_x300
#(
parameter BASE = 0,
parameter DSPNO = 0,
parameter WIDTH = 24
)
(input clk, input rst, input clr,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
// From RX frontend
input [WIDTH-1:0] rx_fe_i,
input [WIDTH-1:0] rx_fe_q,
// To RX control
output [31:0] sample,
input run,
output strobe,
output [31:0] debug
);
localparam cwidth = 25;
localparam zwidth = 24;
wire [31:0] phase_inc;
reg [31:0] phase;
wire [17:0] scale_factor;
wire [cwidth-1:0] i_cordic, q_cordic;
wire [WIDTH-1:0] i_cordic_clip, q_cordic_clip;
wire [WIDTH-1:0] i_cic, q_cic;
wire [46:0] i_hb1, q_hb1;
wire [46:0] i_hb2, q_hb2;
wire [47:0] i_hb3, q_hb3;
wire strobe_cic, strobe_hb1, strobe_hb2, strobe_hb3;
wire [7:0] cic_decim_rate;
reg [WIDTH-1:0] rx_fe_i_mux, rx_fe_q_mux;
wire realmode;
wire swap_iq;
wire [1:0] hb_rate;
wire [2:0] enable_hb = { hb_rate == 2'b11, hb_rate[1] == 1'b1, hb_rate != 2'b00 };
wire reload_go, reload_we1, reload_we2, reload_we3, reload_ld1, reload_ld2, reload_ld3;
wire [17:0] coef_din;
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(phase_inc),.changed());
setting_reg #(.my_addr(BASE+1), .width(18)) sr_1
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({hb_rate, cic_decim_rate}),.changed());
setting_reg #(.my_addr(BASE+3), .width(2)) sr_3
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({realmode,swap_iq}),.changed());
setting_reg #(.my_addr(BASE+4), .width(24)) sr_4
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({reload_ld3,reload_we3,reload_ld2,reload_we2,reload_ld1,reload_we1,coef_din}),.changed(reload_go));
// MUX so we can do realmode signals on either input
always @(posedge clk)
if(swap_iq)
begin
rx_fe_i_mux <= rx_fe_q;
rx_fe_q_mux <= realmode ? 0 : rx_fe_i;
end
else
begin
rx_fe_i_mux <= rx_fe_i;
rx_fe_q_mux <= realmode ? 0 : rx_fe_q;
end
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~run)
phase <= 0;
else
phase <= phase + phase_inc;
//sign extension of cordic input
wire [cwidth-1:0] to_cordic_i, to_cordic_q;
sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_i (.in(rx_fe_i_mux), .out(to_cordic_i));
sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_q (.in(rx_fe_q_mux), .out(to_cordic_q));
// CORDIC 24-bit I/O
cordic_z24 #(.bitwidth(cwidth))
cordic(.clock(clk), .reset(rst), .enable(run),
.xi(to_cordic_i),. yi(to_cordic_q), .zi(phase[31:32-zwidth]),
.xo(i_cordic),.yo(q_cordic),.zo() );
clip_reg #(.bits_in(cwidth), .bits_out(WIDTH)) clip_cordic_i
(.clk(clk), .in(i_cordic), .strobe_in(1'b1), .out(i_cordic_clip));
clip_reg #(.bits_in(cwidth), .bits_out(WIDTH)) clip_cordic_q
(.clk(clk), .in(q_cordic), .strobe_in(1'b1), .out(q_cordic_clip));
// CIC decimator 24 bit I/O
cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate),
.strobe_fast(1'b1),.strobe_slow(strobe_cic) );
cic_decim #(.bw(WIDTH))
decim_i (.clock(clk),.reset(rst),.enable(run),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(i_cordic_clip),.signal_out(i_cic));
cic_decim #(.bw(WIDTH))
decim_q (.clock(clk),.reset(rst),.enable(run),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(q_cordic_clip),.signal_out(q_cic));
// Halfbands
wire nd1, nd2, nd3;
wire rfd1, rfd2, rfd3;
wire rdy1, rdy2, rdy3;
wire data_valid1, data_valid2, data_valid3;
localparam HB1_SCALE = 18;
localparam HB2_SCALE = 18;
localparam HB3_SCALE = 18;
assign strobe_hb1 = data_valid1;
assign strobe_hb2 = data_valid2;
assign strobe_hb3 = data_valid3;
assign nd1 = strobe_cic;
assign nd2 = strobe_hb1;
assign nd3 = strobe_hb2;
hbdec1 hbdec1
(.clk(clk), // input clk
.sclr(rst), // input sclr
.ce(enable_hb[0]), // input ce
.coef_ld(reload_go & reload_ld1), // input coef_ld
.coef_we(reload_go & reload_we1), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd1), // output rfd
.nd(nd1), // input nd
.din_1(i_cic), // input [23 : 0] din_1
.din_2(q_cic), // input [23 : 0] din_2
.rdy(rdy1), // output rdy
.data_valid(data_valid1), // output data_valid
.dout_1(i_hb1), // output [46 : 0] dout_1
.dout_2(q_hb1)); // output [46 : 0] dout_2
hbdec2 hbdec2
(.clk(clk), // input clk
.sclr(rst), // input sclr
.ce(enable_hb[1]), // input ce
.coef_ld(reload_go & reload_ld2), // input coef_ld
.coef_we(reload_go & reload_we2), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd2), // output rfd
.nd(nd2), // input nd
.din_1(i_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_1
.din_2(q_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_2
.rdy(rdy2), // output rdy
.data_valid(data_valid2), // output data_valid
.dout_1(i_hb2), // output [46 : 0] dout_1
.dout_2(q_hb2)); // output [46 : 0] dout_2
hbdec3 hbdec3
(.clk(clk), // input clk
.sclr(rst), // input sclr
.ce(enable_hb[2]), // input ce
.coef_ld(reload_go & reload_ld3), // input coef_ld
.coef_we(reload_go & reload_we3), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd3), // output rfd
.nd(strobe_hb2), // input nd
.din_1(i_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_1
.din_2(q_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_2
.rdy(rdy3), // output rdy
.data_valid(data_valid3), // output data_valid
.dout_1(i_hb3), // output [47 : 0] dout_1
.dout_2(q_hb3)); // output [47 : 0] dout_2
reg [23:0] i_unscaled, q_unscaled;
reg strobe_unscaled;
always @(posedge clk)
case(hb_rate)
2'd0 :
begin
strobe_unscaled <= strobe_cic;
i_unscaled <= i_cic[23:0];
q_unscaled <= q_cic[23:0];
end
2'd1 :
begin
strobe_unscaled <= strobe_hb1;
i_unscaled <= i_hb1[23+HB1_SCALE:HB1_SCALE];
q_unscaled <= q_hb1[23+HB1_SCALE:HB1_SCALE];
end
2'd2 :
begin
strobe_unscaled <= strobe_hb2;
i_unscaled <= i_hb2[23+HB2_SCALE:HB2_SCALE];
q_unscaled <= q_hb2[23+HB2_SCALE:HB2_SCALE];
end
2'd3 :
begin
strobe_unscaled <= strobe_hb3;
i_unscaled <= i_hb3[23+HB3_SCALE:HB3_SCALE];
q_unscaled <= q_hb3[23+HB3_SCALE:HB3_SCALE];
end
endcase // case (hb_rate)
wire [42:0] i_scaled, q_scaled;
wire [23:0] i_clip, q_clip;
reg strobe_scaled;
wire strobe_clip;
MULT_MACRO #(.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(25), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
SCALE_I (.P(i_scaled), // Multiplier output bus, width determined by WIDTH_P parameter
.A({i_unscaled[23],i_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
MULT_MACRO #(.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(25), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
SCALE_Q (.P(q_scaled), // Multiplier output bus, width determined by WIDTH_P parameter
.A({q_unscaled[23],q_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
always @(posedge clk) strobe_scaled <= strobe_unscaled;
clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_i
(.clk(clk), .in(i_scaled[42:14]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip));
clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_q
(.clk(clk), .in(q_scaled[42:14]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out());
round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16)) round_i
(.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe));
round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16)) round_q
(.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out());
endmodule // ddc_chain
|