File: cat_input_lvds.v

package info (click to toggle)
uhd 3.9.5-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 107,272 kB
  • ctags: 57,231
  • sloc: cpp: 66,160; ansic: 59,349; python: 13,245; vhdl: 7,651; tcl: 2,668; sh: 1,634; makefile: 1,031; xml: 557; pascal: 230; csh: 94; asm: 20; perl: 11
file content (511 lines) | stat: -rw-r--r-- 19,930 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
//------------------------------------------------------------------
// Catalina Rx interface:
//
// Use XILINX SERDES to de-serialize interleaved sample data off
// half-wordwidth LVDS differnetial data bus from catalina.
//
// Use FRAME signal to initially synchronise to incomming data after reset
// de-asserts.
//
// In all modes (SISO or MIMO) we output a clock of 1/4 the frequency
// of the Catalina source-synchronous bus clock to be used as the radio_clk.
//
// In SISO mode, every cycle of the radio_clk supplies a new RX sample which
// is routed to both radios, even if only one is actively receving.
//
// In MIMO mode, every other cycle of the radio clock supplies a pair of
// time alligned MIMO samples which are routed to different radios.
//
//------------------------------------------------------------------


module cat_input_lvds
  #(
    parameter INVERT_FRAME_RX = 0,
    parameter INVERT_DATA_RX = 6'b00_0000,
    parameter CLOCK_DELAY = 0,
    parameter DATA_DELAY = 0,
    parameter WIDTH = 6,
    parameter GROUP = "DEFAULT"
    )
    (
     input 			clk200,
     input 			rst,
     input 			mimo,
     // Region local Clocks for I/O cells.
     output                     ddr_clk,
     output                     sdr_clk,
     
     // Source Synchronous external input clock
     input 			ddr_clk_p,
     input 			ddr_clk_n,
     // Source Synchronous data lines
     input [WIDTH-1:0] 		ddr_data_p,
     input [WIDTH-1:0] 		ddr_data_n,
     input 			ddr_frame_p,
     input 			ddr_frame_n,
     // delay control interface
     input 			ctrl_clk,
     input [4:0]		ctrl_data_delay,
     input [4:0]		ctrl_clk_delay,
     input 			ctrl_ld_data_delay,
     input                      ctrl_ld_clk_delay,
     // global output clocks, ddr_clk/4 & ddr_clk/2
     output 			radio_clk,
     output                     radio_clk_2x,
     // SDR Data buses
     output reg [(WIDTH*2)-1:0] i0,
     output reg [(WIDTH*2)-1:0] q0,
     output reg [(WIDTH*2)-1:0] i1,
     output reg [(WIDTH*2)-1:0] q1, 
     output reg 		rx_aligned
     );
   
   //------------------------------------------------------------------
   // UG471 says take reset high asynchronously, and de-assert
   // synchronized to CLKDIV (sdr_clk) for SERDES.
   //------------------------------------------------------------------
   reg 			    rst_sdr_sync;
   
   always @(posedge sdr_clk or posedge rst)
     if (rst)
       rst_sdr_sync <= 1'b1;
     else
       rst_sdr_sync <= 1'b0;
   
   //------------------------------------------------------------------
   // IDELAY is calibrated using (mandatory) IDELAYCTRL cell..
   // Must be feed stable free running clock specified by: FIDELAYCTRL_REF.(200MHz)
   // Mandatory async reset required, min pulse of: TIDELAYCTRL_RPW (~60nS)
   //------------------------------------------------------------------
   IDELAYCTRL IDELAYCTRL_i0
     (
      .REFCLK(clk200),
      .RST(rst_sdr_sync),
      .RDY()
      );
   
   
   //------------------------------------------------------------------
   // Clock input
   //------------------------------------------------------------------
   wire 		    ddr_clk_dly, ddr_clk_unbuf;
     
   IBUFDS  #(.DIFF_TERM("TRUE")) clk_ibufds (.O(ddr_clk_unbuf), .I(ddr_clk_p), .IB(ddr_clk_n));

   (* IODELAY_GROUP = GROUP *) // Specifies group name for associated IDELAYs/ODELAYs and IDELAYCTRL
     IDELAYE2 #(
		.CINVCTRL_SEL("FALSE"),          // Enable dynamic clock inversion (FALSE, TRUE)
		.DELAY_SRC("IDATAIN"),           // Delay input (IDATAIN, DATAIN)
		.HIGH_PERFORMANCE_MODE("FALSE"), // Reduced jitter ("TRUE"), Reduced power ("FALSE")
		.IDELAY_TYPE("VAR_LOAD"), 
		.IDELAY_VALUE(CLOCK_DELAY), 
		.PIPE_SEL("FALSE"), 
		.REFCLK_FREQUENCY(200.0), 
		.SIGNAL_PATTERN("CLOCK")
		)
       ddr_clk_idelaye2 (
			 .CNTVALUEOUT(), // 5-bit output: Counter value output
			 .DATAOUT(ddr_clk_dly), // 1-bit output: Delayed data output
			 .C(ctrl_clk), // 1-bit input: Clock input
			 .CE(1'b0), // 1-bit input: Active high enable increment/decrement input
			 .CINVCTRL(1'b0), // 1-bit input: Dynamic clock inversion input
			 .CNTVALUEIN(ctrl_clk_delay), // 5-bit input: Counter value input
			 .DATAIN(1'b0), // 1-bit input: Internal delay data input
			 .IDATAIN(ddr_clk_unbuf), // 1-bit input: Data input from the I/O
			 .INC(1'b0), // 1-bit input: Increment / Decrement tap delay input
			 .LD(ctrl_ld_clk_delay), // 1-bit input: Load IDELAY_VALUE input
			 .LDPIPEEN(1'b0), // 1-bit input: Enable PIPELINE register to load data input
			 .REGRST(1'b0) // 1-bit input: Active-high reset tap-delay input
			 );

   // IO CLock is DDR freq. This drives SERDES and other I/O elements with minimal clock skew.
   BUFIO ddr_clk_bufio (.O(ddr_clk),.I(ddr_clk_dly));
   // SDR clock is one quarter DDR freq and local to regio using BUFR
   // BUFR is a constraint of the SERDES since we need frequency agnostic clock division.
   // UG471 states can use BUFIO and BUFR divided to directly drive a SERDES legally.
   // (Other option is pair of BUFG's plus an MMCM - But MMCM has fixed frequency)
   wire 		    sdr_clk_2x;
   BUFR #(.BUFR_DIVIDE("2"),.SIM_DEVICE("7SERIES")) sdr_clk_2x_bufr(.O(sdr_clk_2x),.CE(1'b1),.CLR(1'b0),.I(ddr_clk_dly));
   BUFR #(.BUFR_DIVIDE("4"),.SIM_DEVICE("7SERIES")) sdr_clk_bufr(.O(sdr_clk), .CE(1'b1),.CLR(1'b0),.I(ddr_clk_dly));
   // radio_clock is sdr_clk re-buffered with BUFG, and radio_clk_2x is sdr_clk_2x rebuffered, so both can be used globally. 
   // This introduces skew between 
   // sdr_clk -> radio_clock so we must hand data between them carefully even though they have a fixed 
   // phase relationship.
   BUFG radio_clk_1x_bufg (.O(radio_clk), .I(sdr_clk));
   BUFG radio_clk_2x_bufg (.O(radio_clk_2x), .I(sdr_clk_2x));
   
   //------------------------------------------------------------------
   // Frame Signal
   //------------------------------------------------------------------
   wire 		    ddr_frame, ddr_frame_dly;
   wire [7:0] 		    des_frame; // deserialized frame signal
   reg 			    bitslip;
   reg 			    aligned;
   
   
   //
   // Use FRAME signal to get bitstream word alligned.
   // 
   // In MIMO mode FRAME is asserted during the entirity of channel 0, and deassert during the entirity of
   // channel 1.
   //
   localparam IDLE = 0;
   localparam SEARCH = 1;
   localparam SLIP1 = 3;
   localparam SLIP2 = 2;
   localparam SLIP3 = 4;
   localparam SLIP4 = 5;
   localparam SYNC = 6;
   
	     
   reg [2:0] 		    frame_state;

   //
   // Delay start of framesync operation for 64 clocks after reset de-asserts to SERDES to be
   // sure they are in a steady state.
   // Each time we assert bitslip we then have to wait 2 cycles before we can examine the results.
   //
   wire frame_is_aligned = (des_frame[7:0] ==  (INVERT_FRAME_RX ? 8'h0F : 8'hF0));

   reg [5:0] sync_delay;
   reg 	     run_sync;
   

   always @(posedge sdr_clk)
     if (rst_sdr_sync) begin
	sync_delay <= 6'h0;
	run_sync <= 1'b0;
     end else if (sync_delay == 64'h3F)
       run_sync <= 1'b1;
     else
       sync_delay <= sync_delay + 1'b1;
 
   always @(posedge sdr_clk)
     if (!run_sync)
       begin
	  frame_state <= IDLE;
	  bitslip <= 1'b0;
	  aligned <= 1'b0;	  
       end
     else case (frame_state)
	    IDLE: begin
	       bitslip <= 1'b0;
	       aligned <= 1'b0;
	       frame_state <= SEARCH;
	    end

	    SEARCH: begin
	       if (frame_is_aligned) begin
		  frame_state <= SYNC;
		  bitslip <= 1'b0;
		  aligned <= 1'b1;
	       end else begin
		  //  bitslip until captured frame is aligned
		  bitslip <= 1'b1;
		  frame_state <= SLIP1;
		  aligned <= 1'b0;
	       end
	    end
	    
	    SLIP1: begin
	       frame_state <= SLIP2;
	       bitslip <= 1'b0;
	       aligned <= 1'b0;
	    end

	    SLIP2: begin
	       frame_state <= SLIP3;
	       bitslip <= 1'b0;
	       aligned <= 1'b0;
	    end

	    SLIP3: begin
	       frame_state <= SLIP4;
	       bitslip <= 1'b0;
	       aligned <= 1'b0;
	    end

	    SLIP4: begin
	       frame_state <= SEARCH;
	       bitslip <= 1'b0;
	       aligned <= 1'b0;
	    end
	    

	    SYNC: begin
	       if (frame_is_aligned) begin
		  frame_state <= SYNC;
		  aligned <= 1'b1; 
	       end else begin
		  frame_state <= SEARCH;
		  aligned <= 1'b0; 
	       end 
	    end

	  endcase // case(frame_state)
   
	    
   IBUFDS  #(.DIFF_TERM("TRUE")) ddr_frame_ibufds (.O(ddr_frame), .I(ddr_frame_p), .IB(ddr_frame_n));

   (* IODELAY_GROUP = GROUP *) // Specifies group name for associated IDELAYs/ODELAYs and IDELAYCTRL
     IDELAYE2 #(
		.CINVCTRL_SEL("FALSE"),          // Enable dynamic clock inversion (FALSE, TRUE)
		.DELAY_SRC("IDATAIN"),           // Delay input (IDATAIN, DATAIN)
		.HIGH_PERFORMANCE_MODE("FALSE"), // Reduced jitter ("TRUE"), Reduced power ("FALSE")
		.IDELAY_TYPE("VAR_LOAD"), 
		.IDELAY_VALUE(DATA_DELAY), 
		.PIPE_SEL("FALSE"), 
		.REFCLK_FREQUENCY(200.0), 
		.SIGNAL_PATTERN("DATA")
		)
       ddr_frame_idelaye2 (
			   .CNTVALUEOUT(), // 5-bit output: Counter value output
			   .DATAOUT(ddr_frame_dly), // 1-bit output: Delayed data output
			   .C(ctrl_clk), // 1-bit input: Clock input
			   .CE(1'b0), // 1-bit input: Active high enable increment/decrement input
			   .CINVCTRL(1'b0), // 1-bit input: Dynamic clock inversion input
			   .CNTVALUEIN(ctrl_data_delay), // 5-bit input: Counter value input
			   .DATAIN(1'b0), // 1-bit input: Internal delay data input
			   .IDATAIN(ddr_frame), // 1-bit input: Data input from the I/O
			   .INC(1'b0), // 1-bit input: Increment / Decrement tap delay input
			   .LD(ctrl_ld_data_delay), // 1-bit input: Load IDELAY_VALUE input
			   .LDPIPEEN(1'b0), // 1-bit input: Enable PIPELINE register to load data input
			   .REGRST(1'b0) // 1-bit input: Active-high reset tap-delay input
			   );

   ISERDESE2 #(
               .DATA_RATE("DDR"),           // DDR, SDR
               .DATA_WIDTH(8),              // Parallel data width (2-8,10,14)
               .DYN_CLKDIV_INV_EN("FALSE"), // Enable DYNCLKDIVINVSEL inversion (FALSE, TRUE)
               .DYN_CLK_INV_EN("FALSE"),    // Enable DYNCLKINVSEL inversion (FALSE, TRUE)
               // INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)
               .INIT_Q1(1'b0),
               .INIT_Q2(1'b0),
               .INIT_Q3(1'b0),
               .INIT_Q4(1'b0),
               .INTERFACE_TYPE("NETWORKING"),
               .IOBDELAY("BOTH"),
               .NUM_CE(1),
               .OFB_USED("FALSE"),
               .SERDES_MODE("MASTER"),
	       // SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)
	       .SRVAL_Q1(1'b0),
	       .SRVAL_Q2(1'b0),
	       .SRVAL_Q3(1'b0),
	       .SRVAL_Q4(1'b0)
	       )
     ddr_frame_serdese2 (
			 .O(), // 1-bit output: Combinatorial output
			 // Q1 - Q8: 1-bit (each) output: Registered data outputs
			 .Q1(des_frame[0]),
			 .Q2(des_frame[1]),
			 .Q3(des_frame[2]),
			 .Q4(des_frame[3]),
			 .Q5(des_frame[4]),
			 .Q6(des_frame[5]),
			 .Q7(des_frame[6]),
			 .Q8(des_frame[7]),
			 // SHIFTOUT1, SHIFTOUT2: 1-bit (each) output: Data width expansion output ports 
			 .SHIFTOUT1(),
			 .SHIFTOUT2(),     
			 // 1-bit input: The BITSLIP pin performs a Bitslip operation synchronous to
			 // CLKDIV when asserted (active High). Subsequently, the data seen on the Q1
			 // to Q8 output ports will shift, as in a barrel-shifter operation, one 
			 // position every time Bitslip is invoked (DDR operation is different from SDR)
			 .BITSLIP(bitslip),
			 // CE1, CE2: 1-bit (each) input: Data register clock enable inputs
			 .CE1(1'b1),
			 .CE2(1'b1),
			 .CLKDIVP(1'b0),         // 1-bit input: TBD
			 // Clocks: 1-bit (each) input: ISERDESE2 clock input ports
			 .CLK(ddr_clk),          // 1-bit input: High-speed clock
			 .CLKB(!ddr_clk),        // 1-bit input: High-speed secondary clock
			 .CLKDIV(sdr_clk),	 // 1-bit input: Divided clock
			 .OCLK(1'b0),	         // 1-bit input: High speed output clock used when INTERFACE_TYPE="MEMORY"
			 // Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock polarity
			 .DYNCLKDIVSEL(1'b0),    // 1-bit input: Dynamic CLKDIV inversion
			 .DYNCLKSEL(1'b0),       // 1-bit input: Dynamic CLK/CLKB inversion
			 // Input Data: 1-bit (each) input: ISERDESE2 data input ports
			 .D(1'b0),	         // 1-bit input: Data input
			 .DDLY(ddr_frame_dly),   // 1-bit input: Serial data from IDELAYE2
			 .OFB(1'b0),             // 1-bit input: Data feedback from OSERDESE2
			 .OCLKB(1'b0),           // 1-bit input: High speed negative edge output clock
			 .RST(rst_sdr_sync),	 // 1-bit input: Active high asynchronous reset
			 // SHIFTIN1, SHIFTIN2: 1-bit (each) input: Data width expansion input ports
			 .SHIFTIN1(1'b0),
			 .SHIFTIN2(1'b0)
			 );

   
   //------------------------------------------------------------------
   // Data Bus
   //------------------------------------------------------------------
   wire [WIDTH-1:0] ddr_data;
   wire [WIDTH-1:0] ddr_data_dly;
   wire [(WIDTH*2)-1:0]	data_i0, data_i1;
   wire [(WIDTH*2)-1:0] data_q0, data_q1;
   
   
   
   genvar 		    i; 
   generate
      for (i=0 ; i<WIDTH ; i=i+1) begin : generate_data_bus
	 
	 IBUFDS  #(.DIFF_TERM("TRUE")) ddr_data_ibufds (.O(ddr_data[i]), .I(ddr_data_p[i]), .IB(ddr_data_n[i]));

	 (* IODELAY_GROUP = GROUP *) // Specifies group name for associated IDELAYs/ODELAYs and IDELAYCTRL
	   IDELAYE2 #(
		      .CINVCTRL_SEL("FALSE"),          // Enable dynamic clock inversion (FALSE, TRUE)
		      .DELAY_SRC("IDATAIN"),           // Delay input (IDATAIN, DATAIN)
		      .HIGH_PERFORMANCE_MODE("FALSE"), // Reduced jitter ("TRUE"), Reduced power ("FALSE")
		      .IDELAY_TYPE("VAR_LOAD"), 
		      .IDELAY_VALUE(DATA_DELAY), 
		      .PIPE_SEL("FALSE"), 
		      .REFCLK_FREQUENCY(200.0), 
		      .SIGNAL_PATTERN("DATA")
		      )
	     ddr_data_idelaye2 (
				.CNTVALUEOUT(), // 5-bit output: Counter value output
				.DATAOUT(ddr_data_dly[i]), // 1-bit output: Delayed data output
				.C(ctrl_clk), // 1-bit input: Clock input
				.CE(1'b0), // 1-bit input: Active high enable increment/decrement input
				.CINVCTRL(1'b0), // 1-bit input: Dynamic clock inversion input
				.CNTVALUEIN(ctrl_data_delay), // 5-bit input: Counter value input
				.DATAIN(1'b0), // 1-bit input: Internal delay data input
				.IDATAIN(ddr_data[i]), // 1-bit input: Data input from the I/O
				.INC(1'b0), // 1-bit input: Increment / Decrement tap delay input
				.LD(ctrl_ld_data_delay), // 1-bit input: Load IDELAY_VALUE input
				.LDPIPEEN(1'b0), // 1-bit input: Enable PIPELINE register to load data input
				.REGRST(1'b0) // 1-bit input: Active-high reset tap-delay input
				);

	 ISERDESE2 #(
		     .DATA_RATE("DDR"),           // DDR, SDR
		     .DATA_WIDTH(8),              // Parallel data width (2-8,10,14)
		     .DYN_CLKDIV_INV_EN("FALSE"), // Enable DYNCLKDIVINVSEL inversion (FALSE, TRUE)
		     .DYN_CLK_INV_EN("FALSE"),    // Enable DYNCLKINVSEL inversion (FALSE, TRUE)
		     // INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)
		     .INIT_Q1(1'b0),
		     .INIT_Q2(1'b0),
		     .INIT_Q3(1'b0),
		     .INIT_Q4(1'b0),
		     .INTERFACE_TYPE("NETWORKING"),
		     .IOBDELAY("BOTH"),
		     .NUM_CE(1),
		     .OFB_USED("FALSE"),
		     .SERDES_MODE("MASTER"),
		     // SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)
		     .SRVAL_Q1(1'b0),
		     .SRVAL_Q2(1'b0),
		     .SRVAL_Q3(1'b0),
		     .SRVAL_Q4(1'b0)
		     )
	   ddr_data_serdese2 (
			      .O(), // 1-bit output: Combinatorial output
			      // Q1 - Q8: 1-bit (each) output: Registered data outputs
			      .Q1(data_q1[i]),
			      .Q2(data_i1[i]),
			      .Q3(data_q1[WIDTH+i]),
			      .Q4(data_i1[WIDTH+i]),
			      .Q5(data_q0[i]),
			      .Q6(data_i0[i]),
			      .Q7(data_q0[WIDTH+i]),
			      .Q8(data_i0[WIDTH+i]), 
			      // SHIFTOUT1, SHIFTOUT2: 1-bit (each) output: Data width expansion output ports 
			      .SHIFTOUT1(),
			      .SHIFTOUT2(),     
			      // 1-bit input: The BITSLIP pin performs a Bitslip operation synchronous to
			      // CLKDIV when asserted (active High). Subsequently, the data seen on the Q1
			      // to Q8 output ports will shift, as in a barrel-shifter operation, one 
			      // position every time Bitslip is invoked (DDR operation is different from SDR)
			      .BITSLIP(bitslip),
			      // CE1, CE2: 1-bit (each) input: Data register clock enable inputs
			      .CE1(1'b1),
			      .CE2(1'b1),
			      .CLKDIVP(1'b0),         // 1-bit input: TBD
			      // Clocks: 1-bit (each) input: ISERDESE2 clock input ports
			      .CLK(ddr_clk),      // 1-bit input: High-speed clock
			      .CLKB(!ddr_clk),    // 1-bit input: High-speed secondary clock
			      .CLKDIV(sdr_clk),	     // 1-bit input: Divided clock
			      .OCLK(1'b0),	             // 1-bit input: High speed output clock used when INTERFACE_TYPE="MEMORY"
			      // Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock polarity
			      .DYNCLKDIVSEL(1'b0),    // 1-bit input: Dynamic CLKDIV inversion
			      .DYNCLKSEL(1'b0),       // 1-bit input: Dynamic CLK/CLKB inversion
			      // Input Data: 1-bit (each) input: ISERDESE2 data input ports
			      .D(1'b0),	             // 1-bit input: Data input
			      .DDLY(ddr_data_dly[i]),   // 1-bit input: Serial data from IDELAYE2
			      .OFB(1'b0),              // 1-bit input: Data feedback from OSERDESE2
			      .OCLKB(1'b0),          // 1-bit input: High speed negative edge output clock
			      .RST(rst_sdr_sync),	             // 1-bit input: Active high asynchronous reset
			      // SHIFTIN1, SHIFTIN2: 1-bit (each) input: Data width expansion input ports
			      .SHIFTIN1(1'b0),
			      .SHIFTIN2(1'b0)
			      );	 
      end // block: generate_data_bus
   endgenerate

   //
   // Cross these cycles to radio_clk using negative edge.
   // this give 1/2 a radio clock period + BUFG insertion delay for signals to propogate. Thats > 6nS.
   //
   reg [(WIDTH*2)-1:0] radio_data_i0, radio_data_i1, radio_data_q0, radio_data_q1;
   reg 		       radio_aligned;
   
   always @(negedge radio_clk)
     begin
	radio_data_i0[(WIDTH*2)-1:0] <= data_i0[(WIDTH*2)-1:0] ^ {INVERT_DATA_RX,INVERT_DATA_RX};
	radio_data_q0[(WIDTH*2)-1:0] <= data_q0[(WIDTH*2)-1:0] ^ {INVERT_DATA_RX,INVERT_DATA_RX};
	radio_data_i1[(WIDTH*2)-1:0] <= data_i1[(WIDTH*2)-1:0] ^ {INVERT_DATA_RX,INVERT_DATA_RX};
	radio_data_q1[(WIDTH*2)-1:0] <= data_q1[(WIDTH*2)-1:0] ^ {INVERT_DATA_RX,INVERT_DATA_RX};
	radio_aligned <= aligned;	
     end

   always @(posedge radio_clk)
     begin
	i0 <= radio_data_i0;
	q0 <= radio_data_q0;
	if (mimo) { i1, q1 } <= { radio_data_i1, radio_data_q1 };
	else { i1, q1 } <= { radio_data_i0, radio_data_q0 }; // dup single valid channel to both radios
	rx_aligned <= radio_aligned;
     end

   /*******************************************************************
    * Debug only logic below here.
    ******************************************************************/
/* -----\/----- EXCLUDED -----\/-----
   (* keep = "true", max_fanout = 10 *) reg [7:0] des_frame_reg;
   (* keep = "true", max_fanout = 10 *) reg rst_sdr_sync_reg;
   (* keep = "true", max_fanout = 10 *) reg run_sync_reg;
   (* keep = "true", max_fanout = 10 *) reg bitslip_reg;
   (* keep = "true", max_fanout = 10 *) reg aligned_reg;
   (* keep = "true", max_fanout = 10 *) reg [2:0] frame_state_reg;

   always @(posedge sdr_clk)
     begin
	des_frame_reg <= des_frame;
	rst_sdr_sync_reg <= rst_sdr_sync;
	run_sync_reg <= run_sync;
	bitslip_reg <= bitslip;
	aligned_reg <= aligned;
	frame_state_reg <= frame_state;
     end

    ila64 ila64_i (
		   .clk(sdr_clk),        // input clk
		   .probe0(
			   {
			    des_frame_reg,
			    rst_sdr_sync_reg,
			    run_sync_reg,
			    bitslip_reg,
			    aligned_reg,
			    frame_state_reg
			    }
			   )
		   );
 -----/\----- EXCLUDED -----/\----- */
   
			   
endmodule