1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# Writing a Top-level Simulation Module
The top-level simulation module will instantiate the DUT and implement
self-checking behavior. Testbenches can be written in any language
(SystemVerilog, Verilog, VHDL) but to take advantage of our repository of
simulation libraries, it is recommended that SystemVerilog be used.
An example testbench is shown below. This example is for an RFNoC block. If
creating a testbench for RFNoC, it is recommended to use the RFNoC ModTool to
generate a testbench template for your RFNoC block.
See \ref md_usrp3_sim_simulation_libraries for documentation on the simulation
libraries used in this example.
//
// Copyright 2020 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: rfnoc_block_example_tb
//
// Description: An example top-level testbench
//
`default_nettype none
module rfnoc_block_example_tb;
`include "test_exec.svh"
import PkgTestExec::*;
import PkgChdrUtils::*;
import PkgRfnocBlockCtrlBfm::*;
//---------------------------------------------------------------------------
// Testbench Configuration
//---------------------------------------------------------------------------
localparam [ 9:0] THIS_PORTID = 10'h123;
localparam int CHDR_W = 64;
localparam int ITEM_W = 32;
localparam int NUM_PORTS_I = 1;
localparam int NUM_PORTS_O = 1;
localparam int MTU = 13;
localparam int SPP = 64;
localparam int PKT_SIZE_BYTES = SPP * (ITEM_W/8);
localparam int STALL_PROB = 25; // Default BFM stall probability
localparam real CHDR_CLK_PER = 5.0; // 200 MHz
localparam real CTRL_CLK_PER = 25.0; // 40 MHz
//---------------------------------------------------------------------------
// Clocks and Resets
//---------------------------------------------------------------------------
bit rfnoc_chdr_clk;
bit rfnoc_ctrl_clk;
sim_clock_gen #(CHDR_CLK_PER) rfnoc_chdr_clk_gen (.clk(rfnoc_chdr_clk), .rst());
sim_clock_gen #(CTRL_CLK_PER) rfnoc_ctrl_clk_gen (.clk(rfnoc_ctrl_clk), .rst());
//---------------------------------------------------------------------------
// Bus Functional Models
//---------------------------------------------------------------------------
// Backend Interface
RfnocBackendIf backend (rfnoc_chdr_clk, rfnoc_ctrl_clk);
// AXIS-Ctrl Interface
AxiStreamIf #(32) m_ctrl (rfnoc_ctrl_clk, 1'b0);
AxiStreamIf #(32) s_ctrl (rfnoc_ctrl_clk, 1'b0);
// AXIS-CHDR Interfaces
AxiStreamIf #(CHDR_W) m_chdr [NUM_PORTS_I] (rfnoc_chdr_clk, 1'b0);
AxiStreamIf #(CHDR_W) s_chdr [NUM_PORTS_O] (rfnoc_chdr_clk, 1'b0);
// Block Controller BFM
RfnocBlockCtrlBfm #(CHDR_W, ITEM_W) blk_ctrl = new(backend, m_ctrl, s_ctrl);
// CHDR word and item/sample data types
typedef ChdrData #(CHDR_W, ITEM_W)::chdr_word_t chdr_word_t;
typedef ChdrData #(CHDR_W, ITEM_W)::item_t item_t;
// Connect block controller to BFMs
for (genvar i = 0; i < NUM_PORTS_I; i++) begin : gen_bfm_input_connections
initial begin
blk_ctrl.connect_master_data_port(i, m_chdr[i], PKT_SIZE_BYTES);
blk_ctrl.set_master_stall_prob(i, STALL_PROB);
end
end
for (genvar i = 0; i < NUM_PORTS_O; i++) begin : gen_bfm_output_connections
initial begin
blk_ctrl.connect_slave_data_port(i, s_chdr[i]);
blk_ctrl.set_slave_stall_prob(i, STALL_PROB);
end
end
//---------------------------------------------------------------------------
// Device Under Test (DUT)
//---------------------------------------------------------------------------
// DUT Slave (Input) Port Signals
logic [CHDR_W*NUM_PORTS_I-1:0] s_rfnoc_chdr_tdata;
logic [ NUM_PORTS_I-1:0] s_rfnoc_chdr_tlast;
logic [ NUM_PORTS_I-1:0] s_rfnoc_chdr_tvalid;
logic [ NUM_PORTS_I-1:0] s_rfnoc_chdr_tready;
// DUT Master (Output) Port Signals
logic [CHDR_W*NUM_PORTS_O-1:0] m_rfnoc_chdr_tdata;
logic [ NUM_PORTS_O-1:0] m_rfnoc_chdr_tlast;
logic [ NUM_PORTS_O-1:0] m_rfnoc_chdr_tvalid;
logic [ NUM_PORTS_O-1:0] m_rfnoc_chdr_tready;
// Map the array of BFMs to a flat vector for the DUT connections
for (genvar i = 0; i < NUM_PORTS_I; i++) begin : gen_dut_input_connections
// Connect BFM master to DUT slave port
assign s_rfnoc_chdr_tdata[CHDR_W*i+:CHDR_W] = m_chdr[i].tdata;
assign s_rfnoc_chdr_tlast[i] = m_chdr[i].tlast;
assign s_rfnoc_chdr_tvalid[i] = m_chdr[i].tvalid;
assign m_chdr[i].tready = s_rfnoc_chdr_tready[i];
end
for (genvar i = 0; i < NUM_PORTS_O; i++) begin : gen_dut_output_connections
// Connect BFM slave to DUT master port
assign s_chdr[i].tdata = m_rfnoc_chdr_tdata[CHDR_W*i+:CHDR_W];
assign s_chdr[i].tlast = m_rfnoc_chdr_tlast[i];
assign s_chdr[i].tvalid = m_rfnoc_chdr_tvalid[i];
assign m_rfnoc_chdr_tready[i] = s_chdr[i].tready;
end
rfnoc_block_example #(
.THIS_PORTID (THIS_PORTID),
.CHDR_W (CHDR_W),
.MTU (MTU)
) dut (
.rfnoc_chdr_clk (rfnoc_chdr_clk),
.rfnoc_ctrl_clk (rfnoc_ctrl_clk),
.rfnoc_core_config (backend.cfg),
.rfnoc_core_status (backend.sts),
.s_rfnoc_chdr_tdata (s_rfnoc_chdr_tdata),
.s_rfnoc_chdr_tlast (s_rfnoc_chdr_tlast),
.s_rfnoc_chdr_tvalid (s_rfnoc_chdr_tvalid),
.s_rfnoc_chdr_tready (s_rfnoc_chdr_tready),
.m_rfnoc_chdr_tdata (m_rfnoc_chdr_tdata),
.m_rfnoc_chdr_tlast (m_rfnoc_chdr_tlast),
.m_rfnoc_chdr_tvalid (m_rfnoc_chdr_tvalid),
.m_rfnoc_chdr_tready (m_rfnoc_chdr_tready),
.s_rfnoc_ctrl_tdata (m_ctrl.tdata),
.s_rfnoc_ctrl_tlast (m_ctrl.tlast),
.s_rfnoc_ctrl_tvalid (m_ctrl.tvalid),
.s_rfnoc_ctrl_tready (m_ctrl.tready),
.m_rfnoc_ctrl_tdata (s_ctrl.tdata),
.m_rfnoc_ctrl_tlast (s_ctrl.tlast),
.m_rfnoc_ctrl_tvalid (s_ctrl.tvalid),
.m_rfnoc_ctrl_tready (s_ctrl.tready)
);
//---------------------------------------------------------------------------
// Main Test Process
//---------------------------------------------------------------------------
initial begin : tb_main
// Initialize the test exec object for this testbench
test.start_tb("example");
// Start the BFMs running
//blk_ctrl.run();
//--------------------------------
// Reset
//--------------------------------
test.start_test("Flush block then reset it", 10us);
//blk_ctrl.flush_and_reset();
test.end_test();
//--------------------------------
// Test Sequences
//--------------------------------
test.start_test("This is an example test", 10us);
// < Add test code here >
test.end_test();
//--------------------------------
// Finish Up
//--------------------------------
// Display final statistics and results
test.end_tb();
end : tb_main
endmodule : rfnoc_block_example_tb
`default_nettype wire
|