1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
//
// Copyright 2012-2015 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "b200_radio_ctrl_core.hpp"
#include <uhd/exception.hpp>
#include <uhd/transport/bounded_buffer.hpp>
#include <uhd/transport/vrt_if_packet.hpp>
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhdlib/usrp/common/async_packet_handler.hpp>
#include <boost/format.hpp>
#include <functional>
#include <mutex>
#include <queue>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
static const double ACK_TIMEOUT = 2.0; // supposed to be worst case practical timeout
static const double MASSIVE_TIMEOUT = 10.0; // for when we wait on a timed command
static const size_t SR_READBACK = 32;
b200_radio_ctrl_core::~b200_radio_ctrl_core(void)
{
/* NOP */
}
class b200_radio_ctrl_core_impl : public b200_radio_ctrl_core
{
public:
b200_radio_ctrl_core_impl(const bool big_endian,
uhd::transport::zero_copy_if::sptr ctrl_xport,
uhd::transport::zero_copy_if::sptr resp_xport,
const uint32_t sid,
const std::string& name)
: _link_type(vrt::if_packet_info_t::LINK_TYPE_CHDR)
, _packet_type(vrt::if_packet_info_t::PACKET_TYPE_CONTEXT)
, _bige(big_endian)
, _ctrl_xport(ctrl_xport)
, _resp_xport(resp_xport)
, _sid(sid)
, _name(name)
, _seq_out(0)
, _timeout(ACK_TIMEOUT)
, _resp_queue(128 /*max response msgs*/)
, _resp_queue_size(_resp_xport ? _resp_xport->get_num_recv_frames() : 3)
{
if (resp_xport) {
while (resp_xport->get_recv_buff(0.0)) {
} // flush
}
this->set_time(uhd::time_spec_t(0.0));
this->set_tick_rate(1.0); // something possible but bogus
}
~b200_radio_ctrl_core_impl(void) override
{
_timeout = ACK_TIMEOUT; // reset timeout to something small
UHD_SAFE_CALL(
this->peek32(0); // dummy peek with the purpose of ack'ing all packets
_async_task.reset(); // now its ok to release the task
)
}
/*******************************************************************
* Peek and poke 32 bit implementation
******************************************************************/
void poke32(const wb_addr_type addr, const uint32_t data) override
{
std::lock_guard<std::mutex> lock(_mutex);
this->send_pkt(addr / 4, data);
this->wait_for_ack(false);
}
uint32_t peek32(const wb_addr_type addr) override
{
std::lock_guard<std::mutex> lock(_mutex);
this->send_pkt(SR_READBACK, addr / 8);
const uint64_t res = this->wait_for_ack(true);
const uint32_t lo = uint32_t(res & 0xffffffff);
const uint32_t hi = uint32_t(res >> 32);
return ((addr / 4) & 0x1) ? hi : lo;
}
uint64_t peek64(const wb_addr_type addr) override
{
std::lock_guard<std::mutex> lock(_mutex);
this->send_pkt(SR_READBACK, addr / 8);
return this->wait_for_ack(true);
}
/*******************************************************************
* Update methods for time
******************************************************************/
void set_time(const uhd::time_spec_t& time) override
{
std::lock_guard<std::mutex> lock(_mutex);
_time = time;
_use_time = _time != uhd::time_spec_t(0.0);
if (_use_time)
_timeout = MASSIVE_TIMEOUT; // permanently sets larger timeout
}
uhd::time_spec_t get_time(void) override
{
std::lock_guard<std::mutex> lock(_mutex);
return _time;
}
void set_tick_rate(const double rate) override
{
std::lock_guard<std::mutex> lock(_mutex);
_tick_rate = rate;
}
private:
// This is the buffer type for messages in radio control core.
struct resp_buff_type
{
uint32_t data[8];
};
/*******************************************************************
* Primary control and interaction private methods
******************************************************************/
UHD_INLINE void send_pkt(const uint32_t addr, const uint32_t data = 0)
{
managed_send_buffer::sptr buff = _ctrl_xport->get_send_buff(0.0);
if (not buff) {
throw uhd::runtime_error("fifo ctrl timed out getting a send buffer");
}
uint32_t* pkt = buff->cast<uint32_t*>();
// load packet info
vrt::if_packet_info_t packet_info;
packet_info.link_type = _link_type;
packet_info.packet_type = _packet_type;
packet_info.num_payload_words32 = 2;
packet_info.num_payload_bytes =
packet_info.num_payload_words32 * sizeof(uint32_t);
packet_info.packet_count = _seq_out;
packet_info.tsf = _time.to_ticks(_tick_rate);
packet_info.sob = false;
packet_info.eob = false;
packet_info.sid = _sid;
packet_info.has_sid = true;
packet_info.has_cid = false;
packet_info.has_tsi = false;
packet_info.has_tsf = _use_time;
packet_info.has_tlr = false;
// load header
if (_bige)
vrt::if_hdr_pack_be(pkt, packet_info);
else
vrt::if_hdr_pack_le(pkt, packet_info);
// load payload
pkt[packet_info.num_header_words32 + 0] = (_bige) ? uhd::htonx(addr)
: uhd::htowx(addr);
pkt[packet_info.num_header_words32 + 1] = (_bige) ? uhd::htonx(data)
: uhd::htowx(data);
// UHD_LOGGER_INFO("radio_ctrl") << boost::format("0x%08x, 0x%08x\n") % addr %
// data; send the buffer over the interface
_outstanding_seqs.push(_seq_out);
buff->commit(sizeof(uint32_t) * (packet_info.num_packet_words32));
_seq_out++; // inc seq for next call
}
UHD_INLINE uint64_t wait_for_ack(const bool readback)
{
while (readback or (_outstanding_seqs.size() >= _resp_queue_size)) {
// get seq to ack from outstanding packets list
UHD_ASSERT_THROW(not _outstanding_seqs.empty());
const size_t seq_to_ack = _outstanding_seqs.front();
_outstanding_seqs.pop();
// parse the packet
vrt::if_packet_info_t packet_info;
resp_buff_type resp_buff;
memset(&resp_buff, 0x00, sizeof(resp_buff));
uint32_t const* pkt = NULL;
managed_recv_buffer::sptr buff;
// get buffer from response endpoint - or die in timeout
if (_resp_xport) {
buff = _resp_xport->get_recv_buff(_timeout);
try {
UHD_ASSERT_THROW(bool(buff));
UHD_ASSERT_THROW(buff->size() > 0);
} catch (const std::exception& ex) {
throw uhd::io_error(
str(boost::format("Radio ctrl (%s) no response packet - %s")
% _name % ex.what()));
}
pkt = buff->cast<const uint32_t*>();
packet_info.num_packet_words32 = buff->size() / sizeof(uint32_t);
}
// get buffer from response endpoint - or die in timeout
else {
/*
* Couldn't get message with haste.
* Now check both possible queues for messages.
* Messages should come in on _resp_queue,
* but could end up in dump_queue.
* If we don't get a message --> Die in timeout.
*/
double accum_timeout = 0.0;
const double short_timeout = 0.005; // == 5ms
while (
not((_resp_queue.pop_with_haste(resp_buff))
|| (check_dump_queue(resp_buff))
|| (_resp_queue.pop_with_timed_wait(resp_buff, short_timeout)))) {
/*
* If a message couldn't be received within a given timeout
* --> throw AssertionError!
*/
accum_timeout += short_timeout;
UHD_ASSERT_THROW(accum_timeout < _timeout);
}
pkt = resp_buff.data;
packet_info.num_packet_words32 = sizeof(resp_buff) / sizeof(uint32_t);
}
// parse the buffer
try {
packet_info.link_type = _link_type;
if (_bige)
vrt::if_hdr_unpack_be(pkt, packet_info);
else
vrt::if_hdr_unpack_le(pkt, packet_info);
} catch (const std::exception& ex) {
UHD_LOGGER_ERROR("radio_ctrl")
<< "Radio ctrl bad VITA packet: " << ex.what();
if (buff) {
UHD_VAR(buff->size());
} else {
UHD_LOGGER_INFO("radio_ctrl") << "buff is NULL";
}
UHD_LOGGER_INFO("radio_ctrl") << std::hex << pkt[0] << std::dec;
UHD_LOGGER_INFO("radio_ctrl") << std::hex << pkt[1] << std::dec;
UHD_LOGGER_INFO("radio_ctrl") << std::hex << pkt[2] << std::dec;
UHD_LOGGER_INFO("radio_ctrl") << std::hex << pkt[3] << std::dec;
}
// check the buffer
try {
UHD_ASSERT_THROW(packet_info.has_sid);
UHD_ASSERT_THROW(
packet_info.sid == uint32_t((_sid >> 16) | (_sid << 16)));
UHD_ASSERT_THROW(packet_info.packet_count == (seq_to_ack & 0xfff));
UHD_ASSERT_THROW(packet_info.num_payload_words32 == 2);
UHD_ASSERT_THROW(packet_info.packet_type == _packet_type);
} catch (const std::exception& ex) {
throw uhd::io_error(
str(boost::format("Radio ctrl (%s) packet parse error - %s") % _name
% ex.what()));
}
// return the readback value
if (readback and _outstanding_seqs.empty()) {
const uint64_t hi =
(_bige) ? uhd::ntohx(pkt[packet_info.num_header_words32 + 0])
: uhd::wtohx(pkt[packet_info.num_header_words32 + 0]);
const uint64_t lo =
(_bige) ? uhd::ntohx(pkt[packet_info.num_header_words32 + 1])
: uhd::wtohx(pkt[packet_info.num_header_words32 + 1]);
return ((hi << 32) | lo);
}
}
return 0;
}
/*
* If ctrl_core waits for a message that didn't arrive it can search for it in the
* dump queue. This actually happens during shutdown. handle_async_task can't access
* radio_ctrl_cores queue anymore thus it returns the corresponding message. msg_task
* class implements a dump_queue to store such messages. With check_dump_queue we can
* check if a message we are waiting for got stranded there. If a message got stuck we
* get it here and push it onto our own message_queue.
*/
bool check_dump_queue(resp_buff_type& b)
{
const size_t min_buff_size =
8; // Same value as in b200_io_impl->handle_async_task
uint32_t recv_sid = (((_sid) << 16) | ((_sid) >> 16));
uhd::msg_task::msg_payload_t msg;
do {
msg = _async_task->get_msg_from_dump_queue(recv_sid);
} while (msg.size() < min_buff_size && !msg.empty());
if (msg.size() >= min_buff_size) {
memcpy(b.data, &msg.front(), std::min(msg.size(), sizeof(b.data)));
return true;
}
return false;
}
void push_response(const uint32_t* buff) override
{
resp_buff_type resp_buff;
std::memcpy(resp_buff.data, buff, sizeof(resp_buff));
_resp_queue.push_with_haste(resp_buff);
}
void hold_task(uhd::msg_task::sptr task) override
{
_async_task = task;
}
const vrt::if_packet_info_t::link_type_t _link_type;
const vrt::if_packet_info_t::packet_type_t _packet_type;
const bool _bige;
const uhd::transport::zero_copy_if::sptr _ctrl_xport;
const uhd::transport::zero_copy_if::sptr _resp_xport;
uhd::msg_task::sptr _async_task;
const uint32_t _sid;
const std::string _name;
std::mutex _mutex;
size_t _seq_out;
uhd::time_spec_t _time;
bool _use_time;
double _tick_rate;
double _timeout;
std::queue<size_t> _outstanding_seqs;
bounded_buffer<resp_buff_type> _resp_queue;
const size_t _resp_queue_size;
};
b200_radio_ctrl_core::sptr b200_radio_ctrl_core::make(const bool big_endian,
zero_copy_if::sptr ctrl_xport,
zero_copy_if::sptr resp_xport,
const uint32_t sid,
const std::string& name)
{
return sptr(
new b200_radio_ctrl_core_impl(big_endian, ctrl_xport, resp_xport, sid, name));
}
|