1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
//
// Copyright 2011,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/types/dict.hpp>
#include <uhd/utils/soft_register.hpp>
#include <uhdlib/usrp/cores/gpio_atr_3000.hpp>
#include <unordered_map>
using namespace uhd;
using namespace usrp;
//-------------------------------------------------------------
// gpio_atr_3000
//-------------------------------------------------------------
namespace {
// Special RB addr value to indicate no readback
// This value is invalid as a real address because it is not a multiple of 4
static constexpr wb_iface::wb_addr_type READBACK_DISABLED = 0xFFFFFFFF;
}; // namespace
namespace uhd { namespace usrp { namespace gpio_atr {
bool gpio_atr_offsets::is_writeonly() const
{
return readback == READBACK_DISABLED;
}
gpio_atr_offsets gpio_atr_offsets::make_default(
const uhd::wb_iface::wb_addr_type base,
const uhd::wb_iface::wb_addr_type rb_addr,
const size_t stride)
{
gpio_atr_offsets offsets {
base, // Idle
static_cast<uhd::wb_iface::wb_addr_type>(base + stride), // RX
static_cast<uhd::wb_iface::wb_addr_type>(base + stride * 2), // TX
static_cast<uhd::wb_iface::wb_addr_type>(base + stride * 3), // Full Duplex
static_cast<uhd::wb_iface::wb_addr_type>(base + stride * 4), // DDR
static_cast<uhd::wb_iface::wb_addr_type>(base + stride * 5), // Disabled
rb_addr, // Readback
};
return offsets;
}
gpio_atr_offsets gpio_atr_offsets::make_write_only(
const uhd::wb_iface::wb_addr_type base,
const size_t stride)
{
return make_default(base, READBACK_DISABLED, stride);
}
class gpio_atr_3000_impl : public gpio_atr_3000
{
public:
gpio_atr_3000_impl(wb_iface::sptr iface,
const gpio_atr_offsets registers)
: _iface(iface)
, _rb_addr(registers.readback)
, _atr_idle_reg(registers.idle, _atr_disable_reg)
, _atr_rx_reg(registers.rx)
, _atr_tx_reg(registers.tx)
, _atr_fdx_reg(registers.duplex)
, _ddr_reg(registers.ddr)
, _atr_disable_reg(registers.disable)
{
_atr_idle_reg.initialize(*_iface, true);
_atr_rx_reg.initialize(*_iface, true);
_atr_tx_reg.initialize(*_iface, true);
_atr_fdx_reg.initialize(*_iface, true);
_ddr_reg.initialize(*_iface, true);
_atr_disable_reg.initialize(*_iface, true);
for (const auto& attr : gpio_attr_map) {
if (attr.first == usrp::gpio_atr::GPIO_SRC
|| attr.first == usrp::gpio_atr::GPIO_READBACK) {
// Don't set the SRC and READBACK, they're handled elsewhere.
continue;
}
_attr_reg_state.emplace(attr.first, 0);
}
}
void set_atr_mode(const gpio_atr_mode_t mode, const uint32_t mask) override
{
// Each bit in the "ATR Disable" register determines whether the respective bit in
// the GPIO output bus is driven by the ATR engine or a static register. For each
// bit position, a 1 means that the bit is static and 0 means that the bit is
// driven by the ATR state machine. This setting will only get applied to all bits
// in the "mask" that are 1. All other bits will retain their old value.
auto value = (mode == MODE_ATR) ? ~MASK_SET_ALL : MASK_SET_ALL;
_atr_disable_reg.set_with_mask(value, mask);
_atr_disable_reg.flush();
// The attr state is inverted from _atr_disable_reg. In _atr_disable_reg,
// 1 == disable, whereas in CTRL, 1 means enable ATR.
_update_attr_state(GPIO_CTRL, ~value, mask);
}
void set_gpio_ddr(const gpio_ddr_t dir, const uint32_t mask) override
{
// Each bit in the "DDR" register determines whether the respective bit in the
// GPIO bus is an input or an output. For each bit position, a 1 means that the
// bit is an output and 0 means that the bit is an input. This setting will only
// get applied to all bits in the "mask" that are 1. All other bits will retain
// their old value.
auto value = (dir == DDR_INPUT) ? ~MASK_SET_ALL : MASK_SET_ALL;
_ddr_reg.set_with_mask(value, mask);
_ddr_reg.flush();
_update_attr_state(GPIO_DDR, value, mask);
}
void set_atr_reg(const gpio_atr_reg_t atr,
const uint32_t value,
const uint32_t mask = MASK_SET_ALL) override
{
// Set the value of the specified ATR register. For bits with ATR Disable set to
// 1, the IDLE register will hold the output state This setting will only get
// applied to all bits in the "mask" that are 1. All other bits will retain their
// old value.
masked_reg_t* reg = NULL;
gpio_attr_t attr;
switch (atr) {
case ATR_REG_IDLE:
reg = &_atr_idle_reg;
attr = GPIO_ATR_0X;
break;
case ATR_REG_RX_ONLY:
reg = &_atr_rx_reg;
attr = GPIO_ATR_RX;
break;
case ATR_REG_TX_ONLY:
reg = &_atr_tx_reg;
attr = GPIO_ATR_TX;
break;
case ATR_REG_FULL_DUPLEX:
reg = &_atr_fdx_reg;
attr = GPIO_ATR_XX;
break;
default:
reg = &_atr_idle_reg;
attr = GPIO_ATR_0X;
break;
}
// For protection we only write to bits that have the mode ATR by masking the user
// specified "mask" with ~atr_disable.
reg->set_with_mask(value, mask);
reg->flush();
_update_attr_state(attr, value, mask);
}
void set_gpio_out(const uint32_t value, const uint32_t mask = MASK_SET_ALL) override
{
// Set the value of the specified GPIO output register.
// This setting will only get applied to all bits in the "mask" that are 1. All
// other bits will retain their old value.
// For protection we only write to bits that have the mode GPIO by masking the
// user specified "mask" with atr_disable.
_atr_idle_reg.set_gpio_out_with_mask(value, mask);
_atr_idle_reg.flush();
_update_attr_state(GPIO_OUT, value, mask);
}
uint32_t read_gpio() override
{
// Read the state of the GPIO pins
// If a pin is configured as an input, reads the actual value of the pin
// If a pin is configured as an output, reads the last value written to the pin
if (_rb_addr != READBACK_DISABLED) {
return _iface->peek32(_rb_addr);
} else {
throw uhd::runtime_error("read_gpio not supported for write-only interface.");
}
}
uint32_t get_attr_reg(const gpio_attr_t attr) override
{
if (attr == GPIO_SRC) {
throw uhd::runtime_error("Can't get GPIO source by GPIO ATR interface.");
}
if (attr == GPIO_READBACK) {
return read_gpio();
}
if (!_attr_reg_state.count(attr)) {
throw uhd::runtime_error("Invalid GPIO attr!");
}
// Return the cached value of the requested attr
return _attr_reg_state.at(attr);
}
inline void set_gpio_attr(const gpio_attr_t attr, const uint32_t value) override
{
// An attribute based API to configure all settings for the GPIO bus in one
// function call. This API does not have a mask so it configures all bits at the
// same time.
switch (attr) {
case GPIO_SRC:
throw uhd::runtime_error("Can't set GPIO source by GPIO ATR interface.");
case GPIO_CTRL:
set_atr_mode(
MODE_ATR, value); // Configure mode=ATR for all bits that are set
set_atr_mode(
MODE_GPIO, ~value); // Configure mode=GPIO for all bits that are unset
break;
case GPIO_DDR:
set_gpio_ddr(
DDR_OUTPUT, value); // Configure as output for all bits that are set
set_gpio_ddr(
DDR_INPUT, ~value); // Configure as input for all bits that are unset
break;
case GPIO_OUT:
// Only set bits that are driven statically
set_gpio_out(value);
break;
case GPIO_ATR_0X:
// Only set bits that are driven by the ATR engine
set_atr_reg(ATR_REG_IDLE, value);
break;
case GPIO_ATR_RX:
// Only set bits that are driven by the ATR engine
set_atr_reg(ATR_REG_RX_ONLY, value);
break;
case GPIO_ATR_TX:
// Only set bits that are driven by the ATR engine
set_atr_reg(ATR_REG_TX_ONLY, value);
break;
case GPIO_ATR_XX:
// Only set bits that are driven by the ATR engine
set_atr_reg(ATR_REG_FULL_DUPLEX, value);
break;
case GPIO_READBACK:
// This is readonly register, ignore on set.
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
protected:
class masked_reg_t : public uhd::soft_reg32_wo_t
{
public:
masked_reg_t(const wb_iface::wb_addr_type offset) : uhd::soft_reg32_wo_t(offset)
{
uhd::soft_reg32_wo_t::set(REGISTER, 0);
}
virtual void set_with_mask(const uint32_t value, const uint32_t mask)
{
uhd::soft_reg32_wo_t::set(REGISTER,
(value & mask) | (uhd::soft_reg32_wo_t::get(REGISTER) & (~mask)));
}
virtual uint32_t get()
{
return uhd::soft_reg32_wo_t::get(uhd::soft_reg32_wo_t::REGISTER);
}
void flush() override
{
uhd::soft_reg32_wo_t::flush();
}
};
class atr_idle_reg_t : public masked_reg_t
{
public:
atr_idle_reg_t(const wb_iface::wb_addr_type offset, masked_reg_t& atr_disable_reg)
: masked_reg_t(offset)
, _atr_idle_cache(0)
, _gpio_out_cache(0)
, _atr_disable_reg(atr_disable_reg)
{
}
void set_with_mask(const uint32_t value, const uint32_t mask) override
{
_atr_idle_cache = (value & mask) | (_atr_idle_cache & (~mask));
}
uint32_t get() override
{
return _atr_idle_cache;
}
void set_gpio_out_with_mask(const uint32_t value, const uint32_t mask)
{
_gpio_out_cache = (value & mask) | (_gpio_out_cache & (~mask));
}
virtual uint32_t get_gpio_out()
{
return _gpio_out_cache;
}
void flush() override
{
set(REGISTER,
(_atr_idle_cache & (~_atr_disable_reg.get()))
| (_gpio_out_cache & _atr_disable_reg.get()));
masked_reg_t::flush();
}
private:
uint32_t _atr_idle_cache;
uint32_t _gpio_out_cache;
masked_reg_t& _atr_disable_reg;
};
std::unordered_map<gpio_attr_t, uint32_t, std::hash<size_t>> _attr_reg_state;
wb_iface::sptr _iface;
wb_iface::wb_addr_type _rb_addr;
atr_idle_reg_t _atr_idle_reg;
masked_reg_t _atr_rx_reg;
masked_reg_t _atr_tx_reg;
masked_reg_t _atr_fdx_reg;
masked_reg_t _ddr_reg;
masked_reg_t _atr_disable_reg;
void _update_attr_state(
const gpio_attr_t attr, const uint32_t val, const uint32_t mask)
{
_attr_reg_state[attr] = (_attr_reg_state.at(attr) & ~mask) | (val & mask);
}
};
gpio_atr_3000::sptr gpio_atr_3000::make(wb_iface::sptr iface, gpio_atr_offsets registers)
{
gpio_atr_3000::sptr gpio_iface = std::make_shared<gpio_atr_3000_impl>(
iface, registers);
if (registers.is_writeonly()) {
gpio_iface->set_gpio_ddr(DDR_OUTPUT, MASK_SET_ALL);
}
gpio_iface->set_gpio_ddr(DDR_OUTPUT, MASK_SET_ALL);
return gpio_iface;
}
//-------------------------------------------------------------
// db_gpio_atr_3000
//-------------------------------------------------------------
class db_gpio_atr_3000_impl : public gpio_atr_3000_impl, public db_gpio_atr_3000
{
public:
db_gpio_atr_3000_impl(wb_iface::sptr iface, const gpio_atr_offsets registers)
: gpio_atr_3000_impl(iface, registers)
{ /* NOP */
}
inline void set_pin_ctrl(
const db_unit_t unit, const uint32_t value, const uint32_t mask) override
{
gpio_atr_3000_impl::set_atr_mode(MODE_ATR, compute_mask(unit, value & mask));
gpio_atr_3000_impl::set_atr_mode(MODE_GPIO, compute_mask(unit, (~value) & mask));
}
inline uint32_t get_pin_ctrl(const db_unit_t unit) override
{
return (~_atr_disable_reg.get()) >> compute_shift(unit);
}
using gpio_atr_3000_impl::set_gpio_ddr;
inline void set_gpio_ddr(
const db_unit_t unit, const uint32_t value, const uint32_t mask) override
{
gpio_atr_3000_impl::set_gpio_ddr(DDR_OUTPUT, compute_mask(unit, value & mask));
gpio_atr_3000_impl::set_gpio_ddr(DDR_INPUT, compute_mask(unit, (~value) & mask));
}
inline uint32_t get_gpio_ddr(const db_unit_t unit) override
{
return _ddr_reg.get() >> compute_shift(unit);
}
using gpio_atr_3000_impl::set_atr_reg;
inline void set_atr_reg(const db_unit_t unit,
const gpio_atr_reg_t atr,
const uint32_t value,
const uint32_t mask) override
{
gpio_atr_3000_impl::set_atr_reg(
atr, value << compute_shift(unit), compute_mask(unit, mask));
}
inline uint32_t get_atr_reg(const db_unit_t unit, const gpio_atr_reg_t atr) override
{
masked_reg_t* reg = NULL;
switch (atr) {
case ATR_REG_IDLE:
reg = &_atr_idle_reg;
break;
case ATR_REG_RX_ONLY:
reg = &_atr_rx_reg;
break;
case ATR_REG_TX_ONLY:
reg = &_atr_tx_reg;
break;
case ATR_REG_FULL_DUPLEX:
reg = &_atr_fdx_reg;
break;
default:
reg = &_atr_idle_reg;
break;
}
return (reg->get() & compute_mask(unit, MASK_SET_ALL)) >> compute_shift(unit);
}
using gpio_atr_3000_impl::set_gpio_out;
inline void set_gpio_out(
const db_unit_t unit, const uint32_t value, const uint32_t mask) override
{
gpio_atr_3000_impl::set_gpio_out(
static_cast<uint32_t>(value) << compute_shift(unit),
compute_mask(unit, mask));
}
inline uint32_t get_gpio_out(const db_unit_t unit) override
{
return (_atr_idle_reg.get_gpio_out() & compute_mask(unit, MASK_SET_ALL))
>> compute_shift(unit);
}
using gpio_atr_3000_impl::read_gpio;
inline uint32_t read_gpio(const db_unit_t unit) override
{
return (gpio_atr_3000_impl::read_gpio() & compute_mask(unit, MASK_SET_ALL))
>> compute_shift(unit);
}
private:
inline uint32_t compute_shift(const db_unit_t unit)
{
switch (unit) {
case dboard_iface::UNIT_RX:
return 0;
case dboard_iface::UNIT_TX:
return 16;
default:
return 0;
}
}
inline uint32_t compute_mask(const db_unit_t unit, const uint32_t mask)
{
uint32_t tmp_mask = (unit == dboard_iface::UNIT_BOTH) ? mask : (mask & 0xFFFF);
return tmp_mask << (compute_shift(unit));
}
};
db_gpio_atr_3000::sptr db_gpio_atr_3000::make(wb_iface::sptr iface, gpio_atr_offsets registers)
{
return std::make_shared<db_gpio_atr_3000_impl>(iface, registers);
}
}}} // namespace uhd::usrp::gpio_atr
|