1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
//
// Copyright 2010-2012 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
// No RX IO Pins Used
// RX IO Functions
#include "max2118_regs.hpp"
#include <uhd/types/dict.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/usrp/dboard_base.hpp>
#include <uhd/usrp/dboard_manager.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/static.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/format.hpp>
#include <chrono>
#include <cmath>
#include <functional>
#include <thread>
#include <utility>
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The DBSRX constants
**********************************************************************/
static const freq_range_t dbsrx_freq_range(0.8e9, 2.4e9);
// Multiplied by 2.0 for conversion to complex bandpass from lowpass
static const freq_range_t dbsrx_bandwidth_range(2.0 * 4.0e6, 2.0 * 33.0e6);
static const freq_range_t dbsrx_pfd_freq_range(0.15e6, 2.01e6);
static const std::vector<std::string> dbsrx_antennas = list_of("J3");
static const uhd::dict<std::string, gain_range_t> dbsrx_gain_ranges =
map_list_of("GC1", gain_range_t(0, 56, 0.5))("GC2", gain_range_t(0, 24, 1));
static const double usrp1_gpio_clock_rate_limit = 4e6;
/***********************************************************************
* The DBSRX dboard class
**********************************************************************/
class dbsrx : public rx_dboard_base
{
public:
dbsrx(ctor_args_t args);
~dbsrx(void) override;
private:
double _lo_freq;
double _bandwidth;
uhd::dict<std::string, double> _gains;
max2118_write_regs_t _max2118_write_regs;
max2118_read_regs_t _max2118_read_regs;
uint8_t _max2118_addr(void)
{
return (this->get_iface()->get_special_props().mangle_i2c_addrs) ? 0x65 : 0x67;
};
double set_lo_freq(double target_freq);
double set_gain(double gain, const std::string& name);
double set_bandwidth(double bandwidth);
void send_reg(uint8_t start_reg, uint8_t stop_reg)
{
start_reg = uint8_t(uhd::clip(int(start_reg), 0x0, 0x5));
stop_reg = uint8_t(uhd::clip(int(stop_reg), 0x0, 0x5));
for (uint8_t start_addr = start_reg; start_addr <= stop_reg;
start_addr += sizeof(uint32_t) - 1) {
int num_bytes = int(stop_reg - start_addr + 1) > int(sizeof(uint32_t)) - 1
? sizeof(uint32_t) - 1
: stop_reg - start_addr + 1;
// create buffer for register data (+1 for start address)
byte_vector_t regs_vector(num_bytes + 1);
// first byte is the address of first register
regs_vector[0] = start_addr;
// get the register data
for (int i = 0; i < num_bytes; i++) {
regs_vector[1 + i] = _max2118_write_regs.get_reg(start_addr + i);
UHD_LOGGER_TRACE("DBSRX")
<< boost::format("DBSRX: send reg 0x%02x, value 0x%04x, start_addr = "
"0x%04x, num_bytes %d")
% int(start_addr + i) % int(regs_vector[1 + i])
% int(start_addr) % num_bytes;
}
// send the data
this->get_iface()->write_i2c(_max2118_addr(), regs_vector);
}
}
void read_reg(uint8_t start_reg, uint8_t stop_reg)
{
static const uint8_t status_addr = 0x0;
start_reg = uint8_t(uhd::clip(int(start_reg), 0x0, 0x1));
stop_reg = uint8_t(uhd::clip(int(stop_reg), 0x0, 0x1));
for (uint8_t start_addr = start_reg; start_addr <= stop_reg;
start_addr += sizeof(uint32_t)) {
int num_bytes = int(stop_reg - start_addr + 1) > int(sizeof(uint32_t))
? sizeof(uint32_t)
: stop_reg - start_addr + 1;
// create buffer for register data
byte_vector_t regs_vector(num_bytes);
// read from i2c
regs_vector = this->get_iface()->read_i2c(_max2118_addr(), num_bytes);
for (uint8_t i = 0; i < num_bytes; i++) {
if (i + start_addr >= status_addr) {
_max2118_read_regs.set_reg(i + start_addr, regs_vector[i]);
}
UHD_LOGGER_TRACE("DBSRX")
<< boost::format("DBSRX: read reg 0x%02x, value 0x%04x, start_addr = "
"0x%04x, num_bytes %d")
% int(start_addr + i) % int(regs_vector[i]) % int(start_addr)
% num_bytes;
}
}
}
/*!
* Get the lock detect status of the LO.
* \return sensor for locked
*/
sensor_value_t get_locked(void)
{
read_reg(0x0, 0x0);
// mask and return lock detect
bool locked = 5 >= _max2118_read_regs.adc and _max2118_read_regs.adc >= 2;
UHD_LOGGER_TRACE("DBSRX") << boost::format("DBSRX: locked %d") % locked;
return sensor_value_t("LO", locked, "locked", "unlocked");
}
};
/***********************************************************************
* Register the DBSRX dboard
**********************************************************************/
static dboard_base::sptr make_dbsrx(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(new dbsrx(args));
}
UHD_STATIC_BLOCK(reg_dbsrx_dboard)
{
// register the factory function for the rx dbid (others version)
dboard_manager::register_dboard(0x000D, &make_dbsrx, "DBSRX");
// register the factory function for the rx dbid (USRP1 version)
dboard_manager::register_dboard(0x0002, &make_dbsrx, "DBSRX");
}
/***********************************************************************
* Structors
**********************************************************************/
dbsrx::dbsrx(ctor_args_t args) : rx_dboard_base(args)
{
// warn user about incorrect DBID on USRP1, requires R193 populated
if (this->get_iface()->get_special_props().soft_clock_divider
and this->get_rx_id() == 0x000D)
UHD_LOGGER_WARNING("DBSRX")
<< boost::format("DBSRX: incorrect dbid\n"
"Expected dbid 0x0002 and R193\n"
"found dbid == %d\n"
"Please see the daughterboard app notes")
% this->get_rx_id().to_pp_string();
// warn user about incorrect DBID on non-USRP1, requires R194 populated
if (not this->get_iface()->get_special_props().soft_clock_divider
and this->get_rx_id() == 0x0002)
UHD_LOGGER_WARNING("DBSRX")
<< boost::format("DBSRX: incorrect dbid\n"
"Expected dbid 0x000D and R194\n"
"found dbid == %d\n"
"Please see the daughterboard app notes")
% this->get_rx_id().to_pp_string();
// send initial register settings
this->send_reg(0x0, 0x5);
// set defaults for LO, gains, and filter bandwidth
double codec_rate = this->get_iface()->get_codec_rate(dboard_iface::UNIT_RX);
_bandwidth = 0.8 * codec_rate / 2.0; // default to anti-alias at different codec_rate
////////////////////////////////////////////////////////////////////
// Register properties
////////////////////////////////////////////////////////////////////
this->get_rx_subtree()->create<std::string>("name").set("DBSRX");
this->get_rx_subtree()
->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(std::bind(&dbsrx::get_locked, this));
for (const std::string& name : dbsrx_gain_ranges.keys()) {
this->get_rx_subtree()
->create<double>("gains/" + name + "/value")
.set_coercer(std::bind(&dbsrx::set_gain, this, std::placeholders::_1, name))
.set(dbsrx_gain_ranges[name].start());
this->get_rx_subtree()
->create<meta_range_t>("gains/" + name + "/range")
.set(dbsrx_gain_ranges[name]);
}
this->get_rx_subtree()
->create<double>("freq/value")
.set_coercer(std::bind(&dbsrx::set_lo_freq, this, std::placeholders::_1));
this->get_rx_subtree()->create<meta_range_t>("freq/range").set(dbsrx_freq_range);
this->get_rx_subtree()
->create<std::string>("antenna/value")
.set(dbsrx_antennas.at(0));
this->get_rx_subtree()
->create<std::vector<std::string>>("antenna/options")
.set(dbsrx_antennas);
this->get_rx_subtree()->create<std::string>("connection").set("IQ");
this->get_rx_subtree()->create<bool>("enabled").set(true); // always enabled
this->get_rx_subtree()->create<bool>("use_lo_offset").set(false);
this->get_rx_subtree()
->create<double>("bandwidth/value")
.set_coercer(std::bind(&dbsrx::set_bandwidth, this, std::placeholders::_1));
this->get_rx_subtree()
->create<meta_range_t>("bandwidth/range")
.set(dbsrx_bandwidth_range);
// enable only the clocks we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);
// set the gpio directions and atr controls (identically)
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, 0x0); // All unused in atr
if (this->get_iface()->get_special_props().soft_clock_divider) {
this->get_iface()->set_gpio_ddr(
dboard_iface::UNIT_RX, 0x1); // GPIO0 is clock when on USRP1
} else {
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, 0x0); // All Inputs
}
// now its safe to set inital freq and bw
this->get_rx_subtree()->access<double>("freq/value").set(dbsrx_freq_range.start());
this->get_rx_subtree()
->access<double>("bandwidth/value")
.set(2.0 * _bandwidth); //_bandwidth in lowpass, convert to complex bandpass
}
dbsrx::~dbsrx(void) {}
/***********************************************************************
* Tuning
**********************************************************************/
double dbsrx::set_lo_freq(double target_freq)
{
target_freq = dbsrx_freq_range.clip(target_freq);
double actual_freq = 0.0, pfd_freq = 0.0, ref_clock = 0.0;
int R = 0, N = 0, r = 0, m = 0;
bool update_filter_settings = false;
// choose refclock
std::vector<double> clock_rates =
this->get_iface()->get_clock_rates(dboard_iface::UNIT_RX);
const double max_clock_rate = uhd::sorted(clock_rates).back();
for (auto ref_clock_it : uhd::reversed(uhd::sorted(clock_rates))) {
ref_clock = ref_clock_it;
// USRP1 feeds the DBSRX clock from a FPGA GPIO line.
// make sure that this clock does not exceed rate limit.
if (this->get_iface()->get_special_props().soft_clock_divider) {
if (ref_clock > usrp1_gpio_clock_rate_limit)
continue;
}
if (ref_clock > 27.0e6)
continue;
if (size_t(max_clock_rate / ref_clock) % 2 == 1)
continue; // reject asymmetric clocks (odd divisors)
// choose m_divider such that filter tuning constraint is met
m = 31;
while ((ref_clock / m < 1e6 or ref_clock / m > 2.5e6) and m > 0) {
m--;
}
UHD_LOGGER_TRACE("DBSRX")
<< boost::format("DBSRX: trying ref_clock %f and m_divider %d") % (ref_clock)
% m;
if (m >= 32)
continue;
// choose R
for (r = 0; r <= 6; r += 1) {
// compute divider from setting
R = 1 << (r + 1);
UHD_LOGGER_TRACE("DBSRX") << "DBSRX R:" << R << "\n";
// compute PFD compare frequency = ref_clock/R
pfd_freq = ref_clock / R;
// constrain the PFD frequency to specified range
if ((pfd_freq < dbsrx_pfd_freq_range.start())
or (pfd_freq > dbsrx_pfd_freq_range.stop()))
continue;
// compute N
N = int(std::floor(target_freq / pfd_freq));
// constrain N to specified range
if ((N < 256) or (N > 32768))
continue;
goto done_loop;
}
}
done_loop:
// Assert because we failed to find a suitable combination of ref_clock, R and N
UHD_ASSERT_THROW(ref_clock <= 27.0e6 and ref_clock >= 0.0);
UHD_ASSERT_THROW(m and ref_clock / m >= 1e6 and ref_clock / m <= 2.5e6);
UHD_ASSERT_THROW((pfd_freq >= dbsrx_pfd_freq_range.start())
and (pfd_freq <= dbsrx_pfd_freq_range.stop()));
UHD_ASSERT_THROW((N >= 256) and (N <= 32768));
UHD_LOGGER_TRACE("DBSRX")
<< boost::format(
"DBSRX: choose ref_clock (current: %f, new: %f) and m_divider %d")
% (this->get_iface()->get_clock_rate(dboard_iface::UNIT_RX)) % ref_clock
% m;
// if ref_clock or m divider changed, we need to update the filter settings
if (ref_clock != this->get_iface()->get_clock_rate(dboard_iface::UNIT_RX)
or m != _max2118_write_regs.m_divider)
update_filter_settings = true;
// compute resulting output frequency
actual_freq = pfd_freq * N;
// apply ref_clock, R, and N settings
this->get_iface()->set_clock_rate(dboard_iface::UNIT_RX, ref_clock);
ref_clock = this->get_iface()->get_clock_rate(dboard_iface::UNIT_RX);
_max2118_write_regs.m_divider = m;
_max2118_write_regs.r_divider = (max2118_write_regs_t::r_divider_t)r;
_max2118_write_regs.set_n_divider(N);
_max2118_write_regs.ade_vco_ade_read = max2118_write_regs_t::ADE_VCO_ADE_READ_ENABLED;
// compute prescaler variables
int scaler = actual_freq > 1125e6 ? 2 : 4;
_max2118_write_regs.div2 = scaler == 4 ? max2118_write_regs_t::DIV2_DIV4
: max2118_write_regs_t::DIV2_DIV2;
UHD_LOGGER_TRACE("DBSRX")
<< boost::format("DBSRX: scaler %d, actual_freq %f MHz, register bit: %d")
% scaler % (actual_freq / 1e6) % int(_max2118_write_regs.div2);
// compute vco frequency and select vco
double vco_freq = actual_freq * scaler;
if (vco_freq < 2433e6)
_max2118_write_regs.osc_band = 0;
else if (vco_freq < 2711e6)
_max2118_write_regs.osc_band = 1;
else if (vco_freq < 3025e6)
_max2118_write_regs.osc_band = 2;
else if (vco_freq < 3341e6)
_max2118_write_regs.osc_band = 3;
else if (vco_freq < 3727e6)
_max2118_write_regs.osc_band = 4;
else if (vco_freq < 4143e6)
_max2118_write_regs.osc_band = 5;
else if (vco_freq < 4493e6)
_max2118_write_regs.osc_band = 6;
else
_max2118_write_regs.osc_band = 7;
// send settings over i2c
send_reg(0x0, 0x4);
// check vtune for lock condition
read_reg(0x0, 0x0);
UHD_LOGGER_TRACE("DBSRX") << boost::format(
"DBSRX: initial guess for vco %d, vtune adc %d")
% int(_max2118_write_regs.osc_band)
% int(_max2118_read_regs.adc);
// if we are out of lock for chosen vco, change vco
while ((_max2118_read_regs.adc == 0) or (_max2118_read_regs.adc == 7)) {
// vtune is too low, try lower frequency vco
if (_max2118_read_regs.adc == 0) {
if (_max2118_write_regs.osc_band == 0) {
UHD_LOGGER_WARNING("DBSRX")
<< boost::format("DBSRX: Tuning exceeded vco range, "
"_max2118_write_regs.osc_band == %d\n")
% int(_max2118_write_regs.osc_band);
UHD_ASSERT_THROW(_max2118_read_regs.adc != 0); // just to cause a throw
}
if (_max2118_write_regs.osc_band <= 0)
break;
_max2118_write_regs.osc_band -= 1;
}
// vtune is too high, try higher frequency vco
if (_max2118_read_regs.adc == 7) {
if (_max2118_write_regs.osc_band == 7) {
UHD_LOGGER_WARNING("DBSRX")
<< boost::format("DBSRX: Tuning exceeded vco range, "
"_max2118_write_regs.osc_band == %d\n")
% int(_max2118_write_regs.osc_band);
UHD_ASSERT_THROW(_max2118_read_regs.adc != 7); // just to cause a throw
}
if (_max2118_write_regs.osc_band >= 7)
break;
_max2118_write_regs.osc_band += 1;
}
UHD_LOGGER_TRACE("DBSRX") << boost::format("DBSRX: trying vco %d, vtune adc %d")
% int(_max2118_write_regs.osc_band)
% int(_max2118_read_regs.adc);
// update vco selection and check vtune
send_reg(0x2, 0x2);
read_reg(0x0, 0x0);
// allow for setup time before checking condition again
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
UHD_LOGGER_TRACE("DBSRX") << boost::format("DBSRX: final vco %d, vtune adc %d")
% int(_max2118_write_regs.osc_band)
% int(_max2118_read_regs.adc);
// select charge pump bias current
if (_max2118_read_regs.adc <= 2)
_max2118_write_regs.cp_current = max2118_write_regs_t::CP_CURRENT_I_CP_100UA;
else if (_max2118_read_regs.adc >= 5)
_max2118_write_regs.cp_current = max2118_write_regs_t::CP_CURRENT_I_CP_400UA;
else
_max2118_write_regs.cp_current = max2118_write_regs_t::CP_CURRENT_I_CP_200UA;
// update charge pump bias current setting
send_reg(0x2, 0x2);
// compute actual tuned frequency
_lo_freq = this->get_iface()->get_clock_rate(dboard_iface::UNIT_RX)
/ std::pow(2.0, (1 + _max2118_write_regs.r_divider))
* _max2118_write_regs.get_n_divider();
// debug output of calculated variables
UHD_LOGGER_TRACE("DBSRX")
<< boost::format("DBSRX tune:\n")
<< boost::format(" VCO=%d, CP=%d, PFD Freq=%fMHz\n")
% int(_max2118_write_regs.osc_band) % _max2118_write_regs.cp_current
% (pfd_freq / 1e6)
<< boost::format(" R=%d, N=%f, scaler=%d, div2=%d\n") % R % N % scaler
% int(_max2118_write_regs.div2)
<< boost::format(" Ref Freq=%fMHz\n") % (ref_clock / 1e6)
<< boost::format(" Target Freq=%fMHz\n") % (target_freq / 1e6)
<< boost::format(" Actual Freq=%fMHz\n") % (_lo_freq / 1e6)
<< boost::format(" VCO Freq=%fMHz\n") % (vco_freq / 1e6);
if (update_filter_settings)
set_bandwidth(_bandwidth);
get_locked();
return _lo_freq;
}
/***********************************************************************
* Gain Handling
**********************************************************************/
/*!
* Convert a requested gain for the GC2 vga into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return 5 bit the register value
*/
static int gain_to_gc2_vga_reg(double& gain)
{
int reg = 0;
gain = dbsrx_gain_ranges["GC2"].clip(gain);
// Half dB steps from 0-5dB, 1dB steps from 5-24dB
if (gain < 5) {
reg = static_cast<int>(std::lround(31.0 - gain / 0.5));
gain = std::round(gain) * 0.5;
} else {
reg = static_cast<int>(std::lround(22.0 - (gain - 4.0)));
gain = std::round(gain);
}
UHD_LOGGER_TRACE("DBSRX") << boost::format("DBSRX GC2 Gain: %f dB, reg: %d") % gain
% reg;
return reg;
}
/*!
* Convert a requested gain for the GC1 rf vga into the dac_volts value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return dac voltage value
*/
static double gain_to_gc1_rfvga_dac(double& gain)
{
// clip the input
gain = dbsrx_gain_ranges["GC1"].clip(gain);
// voltage level constants
static const double max_volts = 1.2, min_volts = 2.7;
static const double slope = (max_volts - min_volts) / dbsrx_gain_ranges["GC1"].stop();
// calculate the voltage for the aux dac
double dac_volts = gain * slope + min_volts;
UHD_LOGGER_TRACE("DBSRX") << boost::format("DBSRX GC1 Gain: %f dB, dac_volts: %f V")
% gain % dac_volts;
// the actual gain setting
gain = (dac_volts - min_volts) / slope;
return dac_volts;
}
double dbsrx::set_gain(double gain, const std::string& name)
{
assert_has(dbsrx_gain_ranges.keys(), name, "dbsrx gain name");
if (name == "GC2") {
_max2118_write_regs.gc2 = gain_to_gc2_vga_reg(gain);
send_reg(0x5, 0x5);
} else if (name == "GC1") {
// write the new voltage to the aux dac
this->get_iface()->write_aux_dac(
dboard_iface::UNIT_RX, dboard_iface::AUX_DAC_A, gain_to_gc1_rfvga_dac(gain));
} else
UHD_THROW_INVALID_CODE_PATH();
_gains[name] = gain;
return gain;
}
/***********************************************************************
* Bandwidth Handling
**********************************************************************/
double dbsrx::set_bandwidth(double bandwidth)
{
// convert complex bandpass to lowpass bandwidth
bandwidth = bandwidth / 2.0;
// clip the input
bandwidth = dbsrx_bandwidth_range.clip(bandwidth);
double ref_clock = this->get_iface()->get_clock_rate(dboard_iface::UNIT_RX);
// NOTE: _max2118_write_regs.m_divider set in set_lo_freq
// compute f_dac setting
_max2118_write_regs.f_dac = uhd::clip<int>(
int((((bandwidth * _max2118_write_regs.m_divider) / ref_clock) - 4) / 0.145),
0,
127);
// determine actual bandwidth
_bandwidth = double((ref_clock / (_max2118_write_regs.m_divider))
* (4 + 0.145 * _max2118_write_regs.f_dac));
UHD_LOGGER_TRACE("DBSRX") << boost::format(
"DBSRX Filter Bandwidth: %f MHz, m: %d, f_dac: %d\n")
% (_bandwidth / 1e6)
% int(_max2118_write_regs.m_divider)
% int(_max2118_write_regs.f_dac);
this->send_reg(0x3, 0x4);
// convert lowpass back to complex bandpass bandwidth
return 2.0 * _bandwidth;
}
|