1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
//
// Copyright 2010-2012 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
// IO Pin functions
#define POWER_IO (1 << 7) // Low enables power supply
#define ANTSW_IO (1 << 6) // On TX DB, 0 = TX, 1 = RX, on RX DB 0 = main ant, 1 = RX2
#define MIXER_IO (1 << 5) // Enable appropriate mixer
#define LOCKDET_MASK (1 << 2) // Input pin
// Mixer constants
#define MIXER_ENB MIXER_IO
#define MIXER_DIS 0
// Antenna constants
#define ANT_TX 0 // the tx line is transmitting
#define ANT_RX ANTSW_IO // the tx line is receiving
#define ANT_TXRX 0 // the rx line is on txrx
#define ANT_RX2 ANTSW_IO // the rx line in on rx2
#define ANT_XX 0 // dont care how the antenna is set
#include "adf4360_regs.hpp"
#include <uhd/types/dict.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/usrp/dboard_base.hpp>
#include <uhd/usrp/dboard_id.hpp>
#include <uhd/usrp/dboard_manager.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/static.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/format.hpp>
#include <cmath>
#include <functional>
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The RFX Series constants
**********************************************************************/
static const std::vector<std::string> rfx_tx_antennas = list_of("TX/RX")("CAL");
static const std::vector<std::string> rfx_rx_antennas = list_of("TX/RX")("RX2")("CAL");
static const uhd::dict<std::string, gain_range_t> rfx_rx_gain_ranges =
map_list_of("PGA0", gain_range_t(0, 70, 0.022));
static const uhd::dict<std::string, gain_range_t> rfx400_rx_gain_ranges =
map_list_of("PGA0", gain_range_t(0, 45, 0.022));
/***********************************************************************
* The RFX series of dboards
**********************************************************************/
class rfx_xcvr : public xcvr_dboard_base
{
public:
rfx_xcvr(
ctor_args_t args, const freq_range_t& freq_range, bool rx_div2, bool tx_div2);
~rfx_xcvr(void) override;
private:
const freq_range_t _freq_range;
const uhd::dict<std::string, gain_range_t> _rx_gain_ranges;
const uhd::dict<dboard_iface::unit_t, bool> _div2;
std::string _rx_ant;
uhd::dict<std::string, double> _rx_gains;
uint16_t _power_up;
void set_rx_ant(const std::string& ant);
void set_tx_ant(const std::string& ant);
double set_rx_gain(double gain, const std::string& name);
/*!
* Set the LO frequency for the particular dboard unit.
* \param unit which unit rx or tx
* \param target_freq the desired frequency in Hz
* \return the actual frequency in Hz
*/
double set_lo_freq(dboard_iface::unit_t unit, double target_freq);
/*!
* Get the lock detect status of the LO.
* \param unit which unit rx or tx
* \return sensor for locked
*/
sensor_value_t get_locked(dboard_iface::unit_t unit)
{
const bool locked = (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0;
return sensor_value_t("LO", locked, "locked", "unlocked");
}
/*!
* Removed incorrect/confusing RSSI calculation
* Limited dynamic range of sensor makes this less useful
*/
};
/***********************************************************************
* Register the RFX dboards (min freq, max freq, rx div2, tx div2)
**********************************************************************/
static dboard_base::sptr make_rfx_flex400(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(400e6, 500e6), true, true));
}
static dboard_base::sptr make_rfx_flex900(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(750e6, 1050e6), true, true));
}
static dboard_base::sptr make_rfx_flex1800(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(
new rfx_xcvr(args, freq_range_t(1500e6, 2100e6), false, false));
}
static dboard_base::sptr make_rfx_flex1200(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(
new rfx_xcvr(args, freq_range_t(1150e6, 1450e6), true, true));
}
static dboard_base::sptr make_rfx_flex2200(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(
new rfx_xcvr(args, freq_range_t(2000e6, 2400e6), false, false));
}
static dboard_base::sptr make_rfx_flex2400(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(
new rfx_xcvr(args, freq_range_t(2300e6, 2900e6), false, false));
}
UHD_STATIC_BLOCK(reg_rfx_dboards)
{
dboard_manager::register_dboard(0x0024, 0x0028, &make_rfx_flex400, "RFX400");
dboard_manager::register_dboard(0x0025, 0x0029, &make_rfx_flex900, "RFX900");
dboard_manager::register_dboard(0x0034, 0x0035, &make_rfx_flex1800, "RFX1800");
dboard_manager::register_dboard(0x0026, 0x002a, &make_rfx_flex1200, "RFX1200");
dboard_manager::register_dboard(0x002c, 0x002d, &make_rfx_flex2200, "RFX2200");
dboard_manager::register_dboard(0x0027, 0x002b, &make_rfx_flex2400, "RFX2400");
}
/***********************************************************************
* Structors
**********************************************************************/
rfx_xcvr::rfx_xcvr(
ctor_args_t args, const freq_range_t& freq_range, bool rx_div2, bool tx_div2)
: xcvr_dboard_base(args)
, _freq_range(freq_range)
, _rx_gain_ranges(
(get_rx_id() == 0x0024) ? rfx400_rx_gain_ranges : rfx_rx_gain_ranges)
, _div2(map_list_of(dboard_iface::UNIT_RX, rx_div2)(dboard_iface::UNIT_TX, tx_div2))
, _power_up((get_rx_id() == 0x0024 && get_tx_id() == 0x0028) ? POWER_IO : 0)
{
////////////////////////////////////////////////////////////////////
// Register RX properties
////////////////////////////////////////////////////////////////////
if (get_rx_id() == 0x0024)
this->get_rx_subtree()->create<std::string>("name").set("RFX400 RX");
else if (get_rx_id() == 0x0025)
this->get_rx_subtree()->create<std::string>("name").set("RFX900 RX");
else if (get_rx_id() == 0x0034)
this->get_rx_subtree()->create<std::string>("name").set("RFX1800 RX");
else if (get_rx_id() == 0x0026)
this->get_rx_subtree()->create<std::string>("name").set("RFX1200 RX");
else if (get_rx_id() == 0x002c)
this->get_rx_subtree()->create<std::string>("name").set("RFX2200 RX");
else if (get_rx_id() == 0x0027)
this->get_rx_subtree()->create<std::string>("name").set("RFX2400 RX");
else
this->get_rx_subtree()->create<std::string>("name").set("RFX RX");
this->get_rx_subtree()
->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(std::bind(&rfx_xcvr::get_locked, this, dboard_iface::UNIT_RX));
for (const std::string& name : _rx_gain_ranges.keys()) {
this->get_rx_subtree()
->create<double>("gains/" + name + "/value")
.set_coercer(
std::bind(&rfx_xcvr::set_rx_gain, this, std::placeholders::_1, name))
.set(_rx_gain_ranges[name].start());
this->get_rx_subtree()
->create<meta_range_t>("gains/" + name + "/range")
.set(_rx_gain_ranges[name]);
}
this->get_rx_subtree()
->create<double>("freq/value")
.set_coercer(std::bind(
&rfx_xcvr::set_lo_freq, this, dboard_iface::UNIT_RX, std::placeholders::_1))
.set((_freq_range.start() + _freq_range.stop()) / 2.0);
this->get_rx_subtree()->create<meta_range_t>("freq/range").set(_freq_range);
this->get_rx_subtree()
->create<std::string>("antenna/value")
.add_coerced_subscriber(
std::bind(&rfx_xcvr::set_rx_ant, this, std::placeholders::_1))
.set("RX2");
this->get_rx_subtree()
->create<std::vector<std::string>>("antenna/options")
.set(rfx_rx_antennas);
this->get_rx_subtree()->create<std::string>("connection").set("QI");
this->get_rx_subtree()->create<bool>("enabled").set(true); // always enabled
this->get_rx_subtree()->create<bool>("use_lo_offset").set(false);
this->get_rx_subtree()
->create<double>("bandwidth/value")
.set(2 * 20.0e6); // 20MHz low-pass, we want complex double-sided
this->get_rx_subtree()
->create<meta_range_t>("bandwidth/range")
.set(freq_range_t(2 * 20.0e6, 2 * 20.0e6));
////////////////////////////////////////////////////////////////////
// Register TX properties
////////////////////////////////////////////////////////////////////
if (get_tx_id() == 0x0028)
this->get_tx_subtree()->create<std::string>("name").set("RFX400 TX");
else if (get_tx_id() == 0x0029)
this->get_tx_subtree()->create<std::string>("name").set("RFX900 TX");
else if (get_tx_id() == 0x0035)
this->get_tx_subtree()->create<std::string>("name").set("RFX1800 TX");
else if (get_tx_id() == 0x002a)
this->get_tx_subtree()->create<std::string>("name").set("RFX1200 TX");
else if (get_tx_id() == 0x002d)
this->get_tx_subtree()->create<std::string>("name").set("RFX2200 TX");
else if (get_tx_id() == 0x002b)
this->get_tx_subtree()->create<std::string>("name").set("RFX2400 TX");
else
this->get_tx_subtree()->create<std::string>("name").set("RFX TX");
this->get_tx_subtree()
->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(std::bind(&rfx_xcvr::get_locked, this, dboard_iface::UNIT_TX));
this->get_tx_subtree()->create<int>("gains"); // phony property so this dir exists
this->get_tx_subtree()
->create<double>("freq/value")
.set_coercer(std::bind(
&rfx_xcvr::set_lo_freq, this, dboard_iface::UNIT_TX, std::placeholders::_1))
.set((_freq_range.start() + _freq_range.stop()) / 2.0);
this->get_tx_subtree()->create<meta_range_t>("freq/range").set(_freq_range);
this->get_tx_subtree()
->create<std::string>("antenna/value")
.add_coerced_subscriber(
std::bind(&rfx_xcvr::set_tx_ant, this, std::placeholders::_1))
.set(rfx_tx_antennas.at(0));
this->get_tx_subtree()
->create<std::vector<std::string>>("antenna/options")
.set(rfx_tx_antennas);
this->get_tx_subtree()->create<std::string>("connection").set("IQ");
this->get_tx_subtree()->create<bool>("enabled").set(true); // always enabled
this->get_tx_subtree()->create<bool>("use_lo_offset").set(true);
this->get_tx_subtree()
->create<double>("bandwidth/value")
.set(2 * 20.0e6); // 20MHz low-pass, we want complex double-sided
this->get_tx_subtree()
->create<meta_range_t>("bandwidth/range")
.set(freq_range_t(2 * 20.0e6, 2 * 20.0e6));
// enable the clocks that we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true);
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);
// set the gpio directions and atr controls (identically)
uint16_t output_enables = POWER_IO | ANTSW_IO | MIXER_IO;
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, output_enables);
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, output_enables);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, output_enables);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, output_enables);
// setup the tx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_TX, gpio_atr::ATR_REG_IDLE, _power_up | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_TX, gpio_atr::ATR_REG_RX_ONLY, _power_up | ANT_RX | MIXER_DIS);
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_TX, gpio_atr::ATR_REG_TX_ONLY, _power_up | ANT_TX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_FULL_DUPLEX,
_power_up | ANT_TX | MIXER_ENB);
// setup the rx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, _power_up | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_TX_ONLY, _power_up | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_FULL_DUPLEX,
_power_up | ANT_RX2 | MIXER_ENB);
}
rfx_xcvr::~rfx_xcvr(void)
{
/* NOP */
}
/***********************************************************************
* Antenna Handling
**********************************************************************/
void rfx_xcvr::set_rx_ant(const std::string& ant)
{
// validate input
assert_has(rfx_rx_antennas, ant, "rfx rx antenna name");
// set the rx atr regs that change with antenna setting
if (ant == "CAL") {
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_TX_ONLY,
_power_up | ANT_TXRX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_FULL_DUPLEX,
_power_up | ANT_TXRX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_RX_ONLY,
_power_up | MIXER_ENB | ANT_TXRX);
} else {
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_TX_ONLY,
_power_up | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_FULL_DUPLEX,
_power_up | ANT_RX2 | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_RX_ONLY,
_power_up | MIXER_ENB | ((ant == "TX/RX") ? ANT_TXRX : ANT_RX2));
}
// shadow the setting
_rx_ant = ant;
}
void rfx_xcvr::set_tx_ant(const std::string& ant)
{
assert_has(rfx_tx_antennas, ant, "rfx tx antenna name");
// set the tx atr regs that change with antenna setting
if (ant == "CAL") {
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_TX_ONLY,
_power_up | ANT_RX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_FULL_DUPLEX,
_power_up | ANT_RX | MIXER_ENB);
} else {
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_TX_ONLY,
_power_up | ANT_TX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_FULL_DUPLEX,
_power_up | ANT_TX | MIXER_ENB);
}
}
/***********************************************************************
* Gain Handling
**********************************************************************/
static double rx_pga0_gain_to_dac_volts(double& gain, double range)
{
// voltage level constants (negative slope)
static const double max_volts = .2, min_volts = 1.2;
static const double slope = (max_volts - min_volts) / (range);
// calculate the voltage for the aux dac
double dac_volts = uhd::clip<double>(gain * slope + min_volts, max_volts, min_volts);
// the actual gain setting
gain = (dac_volts - min_volts) / slope;
return dac_volts;
}
double rfx_xcvr::set_rx_gain(double gain, const std::string& name)
{
assert_has(_rx_gain_ranges.keys(), name, "rfx rx gain name");
if (name == "PGA0") {
double dac_volts = rx_pga0_gain_to_dac_volts(
gain, (_rx_gain_ranges["PGA0"].stop() - _rx_gain_ranges["PGA0"].start()));
// write the new voltage to the aux dac
this->get_iface()->write_aux_dac(
dboard_iface::UNIT_RX, dboard_iface::AUX_DAC_A, dac_volts);
return gain;
} else
UHD_THROW_INVALID_CODE_PATH();
}
/***********************************************************************
* Tuning
**********************************************************************/
double rfx_xcvr::set_lo_freq(dboard_iface::unit_t unit, double target_freq)
{
UHD_LOGGER_TRACE("RFX") << boost::format("RFX tune: target frequency %f MHz")
% (target_freq / 1e6);
// clip the input
target_freq = _freq_range.clip(target_freq);
if (_div2[unit])
target_freq *= 2;
// rfx400 rx is a special case with div2 in mixer, so adf4360 must output fundamental
bool is_rx_rfx400 = ((get_rx_id() == 0x0024) && unit != dboard_iface::UNIT_TX);
// map prescalers to the register enums
static const uhd::dict<int, adf4360_regs_t::prescaler_value_t> prescaler_to_enum =
map_list_of(8, adf4360_regs_t::PRESCALER_VALUE_8_9)(
16, adf4360_regs_t::PRESCALER_VALUE_16_17)(
32, adf4360_regs_t::PRESCALER_VALUE_32_33);
// map band select clock dividers to enums
static const uhd::dict<int, adf4360_regs_t::band_select_clock_div_t> bandsel_to_enum =
map_list_of(1, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_1)(
2, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_2)(
4, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_4)(
8, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_8);
double actual_freq = 0, ref_freq = this->get_iface()->get_clock_rate(unit);
int R = 0, BS = 0, P = 0, B = 0, A = 0;
/*
* The goal here to to loop through possible R dividers,
* band select clock dividers, and prescaler values.
* Calculate the A and B counters for each set of values.
* The loop exits when it meets all of the constraints.
* The resulting loop values are loaded into the registers.
*
* fvco = [P*B + A] * fref/R
* fvco*R/fref = P*B + A = N
*/
for (R = 2; R <= 32; R += 2) { // Search through all valid R values
for (BS = 1; BS <= 8; BS *= 2) { // Search through all valid band selects
if (ref_freq / R / BS > 1e6) {
continue; // constraint on band select clock
}
for (P = 8; P <= 32; P *= 2) { // Search through all prescaler values
// calculate B and A from N
double N = target_freq * R / ref_freq;
B = int(std::floor(N / P));
A = static_cast<int>(std::lround(N - P * B));
if (B < A or B > 8191 or B < 3 or A > 31) {
continue; // constraints on A, B
}
// calculate the actual frequency
actual_freq = double(P * B + A) * ref_freq / R;
if (actual_freq / P > 300e6) {
continue; // constraint on prescaler output
}
// constraints met: exit loop
goto done_loop;
}
}
}
done_loop:
UHD_LOGGER_TRACE("RFX") << boost::format(
"RFX tune: R=%d, BS=%d, P=%d, B=%d, A=%d, DIV2=%d")
% R % BS % P % B % A
% int(_div2[unit] && (!is_rx_rfx400));
// load the register values
adf4360_regs_t regs;
regs.core_power_level = adf4360_regs_t::CORE_POWER_LEVEL_10MA;
regs.counter_operation = adf4360_regs_t::COUNTER_OPERATION_NORMAL;
regs.muxout_control = adf4360_regs_t::MUXOUT_CONTROL_DLD;
regs.phase_detector_polarity = adf4360_regs_t::PHASE_DETECTOR_POLARITY_POS;
regs.charge_pump_output = adf4360_regs_t::CHARGE_PUMP_OUTPUT_NORMAL;
regs.cp_gain_0 = adf4360_regs_t::CP_GAIN_0_SET1;
regs.mute_till_ld = adf4360_regs_t::MUTE_TILL_LD_ENB;
regs.output_power_level = adf4360_regs_t::OUTPUT_POWER_LEVEL_3_5MA;
regs.current_setting1 = adf4360_regs_t::CURRENT_SETTING1_0_31MA;
regs.current_setting2 = adf4360_regs_t::CURRENT_SETTING2_0_31MA;
regs.power_down = adf4360_regs_t::POWER_DOWN_NORMAL_OP;
regs.prescaler_value = prescaler_to_enum[P];
regs.a_counter = A;
regs.b_counter = B;
regs.cp_gain_1 = adf4360_regs_t::CP_GAIN_1_SET1;
regs.divide_by_2_output = (_div2[unit] && (!is_rx_rfx400))
? // Special case RFX400 RX Mixer divides by two
adf4360_regs_t::DIVIDE_BY_2_OUTPUT_DIV2
: adf4360_regs_t::DIVIDE_BY_2_OUTPUT_FUND;
regs.divide_by_2_prescaler = adf4360_regs_t::DIVIDE_BY_2_PRESCALER_FUND;
regs.r_counter = R;
regs.ablpw = adf4360_regs_t::ABLPW_3_0NS;
regs.lock_detect_precision = adf4360_regs_t::LOCK_DETECT_PRECISION_5CYCLES;
regs.test_mode_bit = 0;
regs.band_select_clock_div = bandsel_to_enum[BS];
// write the registers
std::vector<adf4360_regs_t::addr_t> addrs =
list_of // correct power-up sequence to write registers (R, C, N)
(adf4360_regs_t::ADDR_RCOUNTER)(adf4360_regs_t::ADDR_CONTROL)(
adf4360_regs_t::ADDR_NCOUNTER);
for (adf4360_regs_t::addr_t addr : addrs) {
this->get_iface()->write_spi(
unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 24);
}
// return the actual frequency
if (_div2[unit])
actual_freq /= 2;
UHD_LOGGER_TRACE("RFX") << boost::format("RFX tune: actual frequency %f MHz")
% (actual_freq / 1e6);
return actual_freq;
}
|