1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
|
//
// Copyright 2014-17 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
/***********************************************************************
* Included Files and Libraries
**********************************************************************/
#include "db_ubx.hpp"
#include <uhd/types/device_addr.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/types/direction.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/usrp/dboard_base.hpp>
#include <uhd/usrp/dboard_manager.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhd/utils/static.hpp>
#include <uhdlib/usrp/common/max287x.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <chrono>
#include <functional>
#include <map>
#include <memory>
#include <mutex>
#include <thread>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::usrp::dboard::ubx;
/***********************************************************************
* UBX Data Structures
**********************************************************************/
enum ubx_gpio_field_id_t {
SPI_ADDR,
TX_EN_N,
RX_EN_N,
RX_ANT,
TX_LO_LOCKED,
RX_LO_LOCKED,
CPLD_RST_N,
TX_GAIN,
RX_GAIN,
RXLO1_SYNC,
RXLO2_SYNC,
TXLO1_SYNC,
TXLO2_SYNC
};
enum ubx_cpld_field_id_t {
TXHB_SEL = 0,
TXLB_SEL = 1,
TXLO1_FSEL1 = 2,
TXLO1_FSEL2 = 3,
TXLO1_FSEL3 = 4,
RXHB_SEL = 5,
RXLB_SEL = 6,
RXLO1_FSEL1 = 7,
RXLO1_FSEL2 = 8,
RXLO1_FSEL3 = 9,
SEL_LNA1 = 10,
SEL_LNA2 = 11,
TXLO1_FORCEON = 12,
TXLO2_FORCEON = 13,
TXMOD_FORCEON = 14,
TXMIXER_FORCEON = 15,
TXDRV_FORCEON = 16,
RXLO1_FORCEON = 17,
RXLO2_FORCEON = 18,
RXDEMOD_FORCEON = 19,
RXMIXER_FORCEON = 20,
RXDRV_FORCEON = 21,
RXAMP_FORCEON = 22,
RXLNA1_FORCEON = 23,
RXLNA2_FORCEON = 24,
CAL_ENABLE = 25
};
struct ubx_gpio_field_info_t
{
ubx_gpio_field_id_t id;
dboard_iface::unit_t unit;
uint32_t offset;
uint32_t mask;
uint32_t width;
enum { OUTPUT, INPUT } direction;
bool is_atr_controlled;
uint32_t atr_idle;
uint32_t atr_tx;
uint32_t atr_rx;
uint32_t atr_full_duplex;
};
struct ubx_gpio_reg_t
{
bool dirty;
uint32_t value;
uint32_t mask;
uint32_t ddr;
uint32_t atr_mask;
uint32_t atr_idle;
uint32_t atr_tx;
uint32_t atr_rx;
uint32_t atr_full_duplex;
};
struct ubx_cpld_reg_t
{
void set_field(ubx_cpld_field_id_t field, uint32_t val)
{
UHD_ASSERT_THROW(val == (val & 0x1));
if (val)
value |= uint32_t(1) << field;
else
value &= ~(uint32_t(1) << field);
}
uint32_t value;
};
enum spi_dest_t {
TXLO1 = 0x0, // 0x00: TXLO1, the main TXLO from 400MHz to 6000MHz
TXLO2 = 0x1, // 0x01: TXLO2, the low band mixer TXLO 10MHz to 400MHz
RXLO1 = 0x2, // 0x02: RXLO1, the main RXLO from 400MHz to 6000MHz
RXLO2 = 0x3, // 0x03: RXLO2, the low band mixer RXLO 10MHz to 400MHz
CPLD = 0x4 // 0x04: CPLD SPI Register
};
/***********************************************************************
* UBX Constants
**********************************************************************/
#define fMHz (1000000.0)
static const freq_range_t ubx_freq_range(10e6, 6.0e9);
static const gain_range_t ubx_tx_gain_range(0, 31.5, double(0.5));
static const gain_range_t ubx_rx_gain_range(0, 31.5, double(0.5));
static const std::vector<std::string> ubx_pgas{"PGA-TX", "PGA-RX"};
static const std::vector<std::string> ubx_plls{"TXLO", "RXLO"};
static const std::vector<std::string> ubx_tx_antennas{"TX/RX", "CAL"};
static const std::vector<std::string> ubx_rx_antennas{"TX/RX", "RX2", "CAL"};
static const std::vector<std::string> ubx_power_modes{"performance", "powersave"};
static const std::vector<std::string> ubx_xcvr_modes{"FDX", "TX", "TX/RX", "RX"};
static const std::vector<std::string> ubx_temp_comp_modes{"enabled", "disabled"};
// clang-format off
static const ubx_gpio_field_info_t ubx_proto_gpio_info[] = {
//Field Unit Offset Mask Width Direction ATR IDLE,TX,RX,FDX
{SPI_ADDR, dboard_iface::UNIT_TX, 0, 0x7, 3, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{TX_EN_N, dboard_iface::UNIT_TX, 3, 0x1<<3, 1, ubx_gpio_field_info_t::INPUT, true, 1, 0, 1, 0},
{RX_EN_N, dboard_iface::UNIT_TX, 4, 0x1<<4, 1, ubx_gpio_field_info_t::INPUT, true, 1, 1, 0, 0},
{RX_ANT, dboard_iface::UNIT_TX, 5, 0x1<<5, 1, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{TX_LO_LOCKED, dboard_iface::UNIT_TX, 6, 0x1<<6, 1, ubx_gpio_field_info_t::OUTPUT, false, 0, 0, 0, 0},
{RX_LO_LOCKED, dboard_iface::UNIT_TX, 7, 0x1<<7, 1, ubx_gpio_field_info_t::OUTPUT, false, 0, 0, 0, 0},
{CPLD_RST_N, dboard_iface::UNIT_TX, 9, 0x1<<9, 1, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{TX_GAIN, dboard_iface::UNIT_TX, 10, 0x3F<<10, 10, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{RX_GAIN, dboard_iface::UNIT_RX, 10, 0x3F<<10, 10, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0}
};
static const ubx_gpio_field_info_t ubx_v1_gpio_info[] = {
//Field Unit Offset Mask Width Direction ATR IDLE,TX,RX,FDX
{SPI_ADDR, dboard_iface::UNIT_TX, 0, 0x7, 3, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{CPLD_RST_N, dboard_iface::UNIT_TX, 3, 0x1<<3, 1, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{RX_ANT, dboard_iface::UNIT_TX, 4, 0x1<<4, 1, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{TX_EN_N, dboard_iface::UNIT_TX, 5, 0x1<<5, 1, ubx_gpio_field_info_t::INPUT, true, 1, 0, 1, 0},
{RX_EN_N, dboard_iface::UNIT_TX, 6, 0x1<<6, 1, ubx_gpio_field_info_t::INPUT, true, 1, 1, 0, 0},
{TXLO1_SYNC, dboard_iface::UNIT_TX, 7, 0x1<<7, 1, ubx_gpio_field_info_t::INPUT, true, 0, 0, 0, 0},
{TXLO2_SYNC, dboard_iface::UNIT_TX, 9, 0x1<<9, 1, ubx_gpio_field_info_t::INPUT, true, 0, 0, 0, 0},
{TX_GAIN, dboard_iface::UNIT_TX, 10, 0x3F<<10, 10, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{RX_LO_LOCKED, dboard_iface::UNIT_RX, 0, 0x1, 1, ubx_gpio_field_info_t::OUTPUT, false, 0, 0, 0, 0},
{TX_LO_LOCKED, dboard_iface::UNIT_RX, 1, 0x1<<1, 1, ubx_gpio_field_info_t::OUTPUT, false, 0, 0, 0, 0},
{RXLO1_SYNC, dboard_iface::UNIT_RX, 5, 0x1<<5, 1, ubx_gpio_field_info_t::INPUT, true, 0, 0, 0, 0},
{RXLO2_SYNC, dboard_iface::UNIT_RX, 7, 0x1<<7, 1, ubx_gpio_field_info_t::INPUT, true, 0, 0, 0, 0},
{RX_GAIN, dboard_iface::UNIT_RX, 10, 0x3F<<10, 10, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0}
};
// clang-format on
/***********************************************************************
* Macros for routing and writing SPI registers
**********************************************************************/
#define ROUTE_SPI(iface, dest) \
set_gpio_field(SPI_ADDR, dest); \
write_gpio();
#define WRITE_SPI(iface, val) \
iface->write_spi(dboard_iface::UNIT_TX, spi_config_t::EDGE_RISE, val, 32);
/***********************************************************************
* UBX Class Definition
**********************************************************************/
class ubx_xcvr : public xcvr_dboard_base
{
public:
ubx_xcvr(ctor_args_t args) : xcvr_dboard_base(args)
{
double bw = 40e6;
double pfd_freq_max = 25e6;
////////////////////////////////////////////////////////////////////
// Setup GPIO hardware
////////////////////////////////////////////////////////////////////
_iface = get_iface();
dboard_id_t rx_id = get_rx_id();
dboard_id_t tx_id = get_tx_id();
size_t revision = 1; // default to rev A
// Get revision if programmed
const std::string revision_str = get_rx_eeprom().revision;
if (not revision_str.empty()) {
revision = boost::lexical_cast<size_t>(revision_str);
}
_high_isolation = false;
if (rx_id == UBX_PROTO_V3_RX_ID and tx_id == UBX_PROTO_V3_TX_ID) {
_rev = 0;
} else if (rx_id == UBX_PROTO_V4_RX_ID and tx_id == UBX_PROTO_V4_TX_ID) {
_rev = 1;
} else if (rx_id == UBX_V1_40MHZ_RX_ID and tx_id == UBX_V1_40MHZ_TX_ID) {
_rev = 1;
} else if (rx_id == UBX_V2_40MHZ_RX_ID and tx_id == UBX_V2_40MHZ_TX_ID) {
_rev = 2;
if (revision >= 4) {
_high_isolation = true;
}
} else if (rx_id == UBX_V1_160MHZ_RX_ID and tx_id == UBX_V1_160MHZ_TX_ID) {
bw = 160e6;
_rev = 1;
} else if (rx_id == UBX_V2_160MHZ_RX_ID and tx_id == UBX_V2_160MHZ_TX_ID) {
bw = 160e6;
_rev = 2;
if (revision >= 4) {
_high_isolation = true;
}
} else if (rx_id == UBX_LP_160MHZ_RX_ID and tx_id == UBX_LP_160MHZ_TX_ID) {
// The LP version behaves and looks like a regular UBX-160 v2
bw = 160e6;
_rev = 2;
} else if (rx_id == UBX_TDD_160MHZ_RX_ID and tx_id == UBX_TDD_160MHZ_TX_ID) {
bw = 160e6;
_rev = 2;
_high_isolation = true;
} else {
UHD_THROW_INVALID_CODE_PATH();
}
switch (_rev) {
case 0:
for (size_t i = 0;
i < sizeof(ubx_proto_gpio_info) / sizeof(ubx_gpio_field_info_t);
i++)
_gpio_map[ubx_proto_gpio_info[i].id] = ubx_proto_gpio_info[i];
pfd_freq_max = 25e6;
break;
case 1:
case 2:
for (size_t i = 0;
i < sizeof(ubx_v1_gpio_info) / sizeof(ubx_gpio_field_info_t);
i++)
_gpio_map[ubx_v1_gpio_info[i].id] = ubx_v1_gpio_info[i];
pfd_freq_max = 50e6;
break;
}
// Initialize GPIO registers
memset(&_tx_gpio_reg, 0, sizeof(ubx_gpio_reg_t));
memset(&_rx_gpio_reg, 0, sizeof(ubx_gpio_reg_t));
for (std::map<ubx_gpio_field_id_t, ubx_gpio_field_info_t>::iterator entry =
_gpio_map.begin();
entry != _gpio_map.end();
entry++) {
ubx_gpio_field_info_t info = entry->second;
ubx_gpio_reg_t* reg =
(info.unit == dboard_iface::UNIT_TX ? &_tx_gpio_reg : &_rx_gpio_reg);
if (info.direction == ubx_gpio_field_info_t::INPUT)
reg->ddr |= info.mask;
if (info.is_atr_controlled) {
reg->atr_mask |= info.mask;
reg->atr_idle |= (info.atr_idle << info.offset) & info.mask;
reg->atr_tx |= (info.atr_tx << info.offset) & info.mask;
reg->atr_rx |= (info.atr_rx << info.offset) & info.mask;
reg->atr_full_duplex |= (info.atr_full_duplex << info.offset) & info.mask;
}
}
// Enable the reference clocks that we need
_rx_target_pfd_freq = pfd_freq_max;
_tx_target_pfd_freq = pfd_freq_max;
if (_rev >= 1) {
bool can_set_clock_rate = true;
// set dboard clock rates to as close to the max PFD freq as possible
if (_iface->get_clock_rate(dboard_iface::UNIT_RX) > pfd_freq_max) {
std::vector<double> rates =
_iface->get_clock_rates(dboard_iface::UNIT_RX);
double highest_rate = 0.0;
for (double rate : rates) {
if (rate <= pfd_freq_max and rate > highest_rate)
highest_rate = rate;
}
try {
_iface->set_clock_rate(dboard_iface::UNIT_RX, highest_rate);
} catch (const uhd::not_implemented_error&) {
UHD_LOG_WARNING(
"UBX", "Unable to set dboard clock rate - phase will vary");
can_set_clock_rate = false;
}
_rx_target_pfd_freq = highest_rate;
}
if (can_set_clock_rate
and _iface->get_clock_rate(dboard_iface::UNIT_TX) > pfd_freq_max) {
std::vector<double> rates =
_iface->get_clock_rates(dboard_iface::UNIT_TX);
double highest_rate = 0.0;
for (double rate : rates) {
if (rate <= pfd_freq_max and rate > highest_rate)
highest_rate = rate;
}
try {
_iface->set_clock_rate(dboard_iface::UNIT_TX, highest_rate);
} catch (const uhd::not_implemented_error&) {
UHD_LOG_WARNING(
"UBX", "Unable to set dboard clock rate - phase will vary");
}
_tx_target_pfd_freq = highest_rate;
}
}
_iface->set_clock_enabled(dboard_iface::UNIT_TX, true);
_iface->set_clock_enabled(dboard_iface::UNIT_RX, true);
// Set direction of GPIO pins (1 is input to UBX, 0 is output)
_iface->set_gpio_ddr(dboard_iface::UNIT_TX, _tx_gpio_reg.ddr);
_iface->set_gpio_ddr(dboard_iface::UNIT_RX, _rx_gpio_reg.ddr);
// Set default GPIO values
set_gpio_field(TX_GAIN, 0);
set_gpio_field(CPLD_RST_N, 0);
set_gpio_field(RX_ANT, 1);
set_gpio_field(TX_EN_N, 1);
set_gpio_field(RX_EN_N, 1);
set_gpio_field(SPI_ADDR, 0x7);
set_gpio_field(RX_GAIN, 0);
set_gpio_field(TXLO1_SYNC, 0);
set_gpio_field(TXLO2_SYNC, 0);
set_gpio_field(RXLO1_SYNC, 0);
set_gpio_field(RXLO1_SYNC, 0);
write_gpio();
// Configure ATR
_iface->set_atr_reg(
dboard_iface::UNIT_TX, gpio_atr::ATR_REG_IDLE, _tx_gpio_reg.atr_idle);
_iface->set_atr_reg(
dboard_iface::UNIT_TX, gpio_atr::ATR_REG_TX_ONLY, _tx_gpio_reg.atr_tx);
_iface->set_atr_reg(
dboard_iface::UNIT_TX, gpio_atr::ATR_REG_RX_ONLY, _tx_gpio_reg.atr_rx);
_iface->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_FULL_DUPLEX,
_tx_gpio_reg.atr_full_duplex);
_iface->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, _rx_gpio_reg.atr_idle);
_iface->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_TX_ONLY, _rx_gpio_reg.atr_tx);
_iface->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_RX_ONLY, _rx_gpio_reg.atr_rx);
_iface->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_FULL_DUPLEX,
_rx_gpio_reg.atr_full_duplex);
// Engage ATR control (1 is ATR control, 0 is manual control)
_iface->set_pin_ctrl(dboard_iface::UNIT_TX, _tx_gpio_reg.atr_mask);
_iface->set_pin_ctrl(dboard_iface::UNIT_RX, _rx_gpio_reg.atr_mask);
// bring CPLD out of reset
std::this_thread::sleep_for(
std::chrono::milliseconds(20)); // hold CPLD reset for minimum of 20 ms
set_gpio_field(CPLD_RST_N, 1);
write_gpio();
// Initialize LOs
if (_rev == 0) {
_txlo1 = max287x_iface::make<max2870>(
std::bind(&ubx_xcvr::write_spi_regs, this, TXLO1, std::placeholders::_1));
_txlo2 = max287x_iface::make<max2870>(
std::bind(&ubx_xcvr::write_spi_regs, this, TXLO2, std::placeholders::_1));
_rxlo1 = max287x_iface::make<max2870>(
std::bind(&ubx_xcvr::write_spi_regs, this, RXLO1, std::placeholders::_1));
_rxlo2 = max287x_iface::make<max2870>(
std::bind(&ubx_xcvr::write_spi_regs, this, RXLO2, std::placeholders::_1));
std::vector<max287x_iface::sptr> los{_txlo1, _txlo2, _rxlo1, _rxlo2};
for (max287x_iface::sptr lo : los) {
lo->set_auto_retune(false);
lo->set_muxout_mode(max287x_iface::MUXOUT_DLD);
lo->set_ld_pin_mode(max287x_iface::LD_PIN_MODE_DLD);
}
} else if (_rev == 1 or _rev == 2) {
_txlo1 = max287x_iface::make<max2871>(
std::bind(&ubx_xcvr::write_spi_regs, this, TXLO1, std::placeholders::_1));
_txlo2 = max287x_iface::make<max2871>(
std::bind(&ubx_xcvr::write_spi_regs, this, TXLO2, std::placeholders::_1));
_rxlo1 = max287x_iface::make<max2871>(
std::bind(&ubx_xcvr::write_spi_regs, this, RXLO1, std::placeholders::_1));
_rxlo2 = max287x_iface::make<max2871>(
std::bind(&ubx_xcvr::write_spi_regs, this, RXLO2, std::placeholders::_1));
std::vector<max287x_iface::sptr> los{_txlo1, _txlo2, _rxlo1, _rxlo2};
for (max287x_iface::sptr lo : los) {
lo->set_auto_retune(false);
// lo->set_cycle_slip_mode(true); // tried it - caused longer lock times
lo->set_charge_pump_current(max287x_iface::CHARGE_PUMP_CURRENT_5_12MA);
lo->set_muxout_mode(max287x_iface::MUXOUT_SYNC);
lo->set_ld_pin_mode(max287x_iface::LD_PIN_MODE_DLD);
}
} else {
UHD_THROW_INVALID_CODE_PATH();
}
// Initialize CPLD register
_prev_cpld_value = 0xFFFF;
_cpld_reg.value = 0;
write_cpld_reg();
////////////////////////////////////////////////////////////////////
// Register power save properties
////////////////////////////////////////////////////////////////////
get_rx_subtree()
->create<std::vector<std::string>>("power_mode/options")
.set(ubx_power_modes);
get_rx_subtree()
->create<std::string>("power_mode/value")
.add_coerced_subscriber(
std::bind(&ubx_xcvr::set_power_mode, this, std::placeholders::_1))
.set("performance");
get_rx_subtree()
->create<std::vector<std::string>>("xcvr_mode/options")
.set(ubx_xcvr_modes);
get_rx_subtree()
->create<std::string>("xcvr_mode/value")
.add_coerced_subscriber(
std::bind(&ubx_xcvr::set_xcvr_mode, this, std::placeholders::_1))
.set("FDX");
get_rx_subtree()
->create<std::vector<std::string>>("temp_comp_mode/options")
.set(ubx_temp_comp_modes);
get_rx_subtree()
->create<std::string>("temp_comp_mode/value")
.add_coerced_subscriber(
[this](std::string mode) { this->set_temp_comp_mode(mode); })
.set("disabled");
get_tx_subtree()
->create<std::vector<std::string>>("power_mode/options")
.set(ubx_power_modes);
get_tx_subtree()
->create<std::string>("power_mode/value")
.add_coerced_subscriber(std::bind(&uhd::property<std::string>::set,
&get_rx_subtree()->access<std::string>("power_mode/value"),
std::placeholders::_1))
.set_publisher(std::bind(&uhd::property<std::string>::get,
&get_rx_subtree()->access<std::string>("power_mode/value")));
get_tx_subtree()
->create<std::vector<std::string>>("xcvr_mode/options")
.set(ubx_xcvr_modes);
get_tx_subtree()
->create<std::string>("xcvr_mode/value")
.add_coerced_subscriber(std::bind(&uhd::property<std::string>::set,
&get_rx_subtree()->access<std::string>("xcvr_mode/value"),
std::placeholders::_1))
.set_publisher(std::bind(&uhd::property<std::string>::get,
&get_rx_subtree()->access<std::string>("xcvr_mode/value")));
get_tx_subtree()
->create<std::vector<std::string>>("temp_comp_mode/options")
.set(ubx_temp_comp_modes);
get_tx_subtree()
->create<std::string>("temp_comp_mode/value")
.add_coerced_subscriber([this](std::string mode) {
this->get_rx_subtree()
->access<std::string>("temp_comp_mode/value")
.set(mode);
})
.set_publisher([this]() {
return this->get_rx_subtree()
->access<std::string>("temp_comp_mode/value")
.get();
});
////////////////////////////////////////////////////////////////////
// Register TX properties
////////////////////////////////////////////////////////////////////
get_tx_subtree()->create<std::string>("name").set("UBX TX");
get_tx_subtree()->create<device_addr_t>("tune_args").set(device_addr_t());
get_tx_subtree()
->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(std::bind(&ubx_xcvr::get_locked, this, "TXLO"));
get_tx_subtree()
->create<double>("gains/PGA0/value")
.set_coercer(std::bind(&ubx_xcvr::set_tx_gain, this, std::placeholders::_1))
.set(0);
get_tx_subtree()->create<meta_range_t>("gains/PGA0/range").set(ubx_tx_gain_range);
get_tx_subtree()
->create<double>("freq/value")
.set_coercer(std::bind(&ubx_xcvr::set_tx_freq, this, std::placeholders::_1))
.set(ubx_freq_range.start());
get_tx_subtree()->create<meta_range_t>("freq/range").set(ubx_freq_range);
get_tx_subtree()
->create<std::vector<std::string>>("antenna/options")
.set(ubx_tx_antennas);
get_tx_subtree()
->create<std::string>("antenna/value")
.set_coercer(std::bind(&ubx_xcvr::set_tx_ant, this, std::placeholders::_1))
.set(ubx_tx_antennas.at(0));
get_tx_subtree()->create<std::string>("connection").set("QI");
get_tx_subtree()->create<bool>("enabled").set(true); // always enabled
get_tx_subtree()->create<bool>("use_lo_offset").set(false);
get_tx_subtree()->create<double>("bandwidth/value").set(bw);
get_tx_subtree()
->create<meta_range_t>("bandwidth/range")
.set(freq_range_t(bw, bw));
get_tx_subtree()
->create<int64_t>("sync_delay")
.add_coerced_subscriber(
std::bind(&ubx_xcvr::set_sync_delay, this, true, std::placeholders::_1))
.set(0);
////////////////////////////////////////////////////////////////////
// Register RX properties
////////////////////////////////////////////////////////////////////
get_rx_subtree()->create<std::string>("name").set("UBX RX");
get_rx_subtree()->create<device_addr_t>("tune_args").set(device_addr_t());
get_rx_subtree()
->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(std::bind(&ubx_xcvr::get_locked, this, "RXLO"));
get_rx_subtree()
->create<double>("gains/PGA0/value")
.set_coercer(std::bind(&ubx_xcvr::set_rx_gain, this, std::placeholders::_1))
.set(0);
get_rx_subtree()->create<meta_range_t>("gains/PGA0/range").set(ubx_rx_gain_range);
get_rx_subtree()
->create<double>("freq/value")
.set_coercer(std::bind(&ubx_xcvr::set_rx_freq, this, std::placeholders::_1))
.set(ubx_freq_range.start());
get_rx_subtree()->create<meta_range_t>("freq/range").set(ubx_freq_range);
get_rx_subtree()
->create<std::vector<std::string>>("antenna/options")
.set(ubx_rx_antennas);
get_rx_subtree()
->create<std::string>("antenna/value")
.set_coercer(std::bind(&ubx_xcvr::set_rx_ant, this, std::placeholders::_1))
.set("RX2");
get_rx_subtree()->create<std::string>("connection").set("IQ");
get_rx_subtree()->create<bool>("enabled").set(true); // always enabled
get_rx_subtree()->create<bool>("use_lo_offset").set(false);
get_rx_subtree()->create<double>("bandwidth/value").set(bw);
get_rx_subtree()
->create<meta_range_t>("bandwidth/range")
.set(freq_range_t(bw, bw));
get_rx_subtree()
->create<int64_t>("sync_delay")
.add_coerced_subscriber(
std::bind(&ubx_xcvr::set_sync_delay, this, false, std::placeholders::_1))
.set(0);
}
~ubx_xcvr(void) override
{
UHD_SAFE_CALL(
// Shutdown synthesizers
_txlo1->shutdown(); _txlo2->shutdown(); _rxlo1->shutdown();
_rxlo2->shutdown();
// Reset CPLD values
_cpld_reg.value = 0;
write_cpld_reg();
// Reset GPIO values
set_gpio_field(TX_GAIN, 0);
set_gpio_field(CPLD_RST_N, 0);
set_gpio_field(RX_ANT, 1);
set_gpio_field(TX_EN_N, 1);
set_gpio_field(RX_EN_N, 1);
set_gpio_field(SPI_ADDR, 0x7);
set_gpio_field(RX_GAIN, 0);
set_gpio_field(TXLO1_SYNC, 0);
set_gpio_field(TXLO2_SYNC, 0);
set_gpio_field(RXLO1_SYNC, 0);
set_gpio_field(RXLO1_SYNC, 0);
write_gpio();)
}
private:
enum power_mode_t { PERFORMANCE, POWERSAVE };
enum xcvr_mode_t { FDX, TDD, TX, RX, FAST_TDD };
/***********************************************************************
* Helper Functions
**********************************************************************/
void write_spi_reg(spi_dest_t dest, uint32_t value)
{
std::lock_guard<std::mutex> lock(_spi_mutex);
ROUTE_SPI(_iface, dest);
WRITE_SPI(_iface, value);
}
void write_spi_regs(spi_dest_t dest, std::vector<uint32_t> values)
{
std::lock_guard<std::mutex> lock(_spi_mutex);
ROUTE_SPI(_iface, dest);
for (uint32_t value : values)
WRITE_SPI(_iface, value);
}
void set_cpld_field(ubx_cpld_field_id_t id, uint32_t value)
{
_cpld_reg.set_field(id, value);
}
void write_cpld_reg()
{
if (_cpld_reg.value != _prev_cpld_value) {
write_spi_reg(CPLD, _cpld_reg.value);
_prev_cpld_value = _cpld_reg.value;
}
}
void set_gpio_field(ubx_gpio_field_id_t id, uint32_t value)
{
// Look up field info
std::map<ubx_gpio_field_id_t, ubx_gpio_field_info_t>::iterator entry =
_gpio_map.find(id);
if (entry == _gpio_map.end())
return;
ubx_gpio_field_info_t field_info = entry->second;
if (field_info.direction == ubx_gpio_field_info_t::OUTPUT)
return;
ubx_gpio_reg_t* reg =
(field_info.unit == dboard_iface::UNIT_TX ? &_tx_gpio_reg : &_rx_gpio_reg);
uint32_t _value = reg->value;
uint32_t _mask = reg->mask;
// Set field and mask
_value &= ~field_info.mask;
_value |= (value << field_info.offset) & field_info.mask;
_mask |= field_info.mask;
// Mark whether register is dirty or not
if (_value != reg->value) {
reg->value = _value;
reg->mask = _mask;
reg->dirty = true;
}
}
uint32_t get_gpio_field(ubx_gpio_field_id_t id)
{
// Look up field info
std::map<ubx_gpio_field_id_t, ubx_gpio_field_info_t>::iterator entry =
_gpio_map.find(id);
if (entry == _gpio_map.end())
return 0;
ubx_gpio_field_info_t field_info = entry->second;
if (field_info.direction == ubx_gpio_field_info_t::INPUT) {
ubx_gpio_reg_t* reg = (field_info.unit == dboard_iface::UNIT_TX
? &_tx_gpio_reg
: &_rx_gpio_reg);
return (reg->value >> field_info.offset) & field_info.mask;
}
// Read register
uint32_t value = _iface->read_gpio(field_info.unit);
value &= field_info.mask;
value >>= field_info.offset;
// Return field value
return value;
}
void write_gpio()
{
if (_tx_gpio_reg.dirty) {
_iface->set_gpio_out(
dboard_iface::UNIT_TX, _tx_gpio_reg.value, _tx_gpio_reg.mask);
_tx_gpio_reg.dirty = false;
_tx_gpio_reg.mask = 0;
}
if (_rx_gpio_reg.dirty) {
_iface->set_gpio_out(
dboard_iface::UNIT_RX, _rx_gpio_reg.value, _rx_gpio_reg.mask);
_rx_gpio_reg.dirty = false;
_rx_gpio_reg.mask = 0;
}
}
void sync_phase(uhd::time_spec_t cmd_time, uhd::direction_t dir)
{
// Send phase sync signal only if the command time is set
if (cmd_time != uhd::time_spec_t(0.0)) {
// Delay 400 microseconds to allow LOs to lock
cmd_time += uhd::time_spec_t(0.0004);
// Phase synchronization for MAX2871 requires that the sync signal
// is at least 4/(N*PFD_freq) + 2.6ns before the rising edge of the
// ref clock and 4/(N*PFD_freq) after the rising edge of the ref clock.
// Since the MAX2871 requires the ref freq and PFD freq be the same
// for phase synchronization, the dboard clock rate is used as the PFD
// freq and the sync signal is aligned to the falling edge to meet
// the setup and hold requirements. Since the command time ticks
// at the radio clock rate, this only works if the radio clock is
// an even multiple of the dboard clock, the dboard clock is a
// multiple of the system reference, and the device time has been
// set on a PPS edge sampled by the system reference clock.
const double pfd_freq = _iface->get_clock_rate(
dir == TX_DIRECTION ? dboard_iface::UNIT_TX : dboard_iface::UNIT_RX);
const double tick_rate = _iface->get_codec_rate(
dir == TX_DIRECTION ? dboard_iface::UNIT_TX : dboard_iface::UNIT_RX);
const int64_t ticks_per_pfd_cycle = (int64_t)(tick_rate / pfd_freq);
// Convert time to ticks
int64_t ticks = cmd_time.to_ticks(tick_rate);
// Align time to next falling edge of dboard clock
ticks += ticks_per_pfd_cycle - (ticks % ticks_per_pfd_cycle)
+ (ticks_per_pfd_cycle / 2);
// Add any user specified delay
ticks += dir == TX_DIRECTION ? _tx_sync_delay : _rx_sync_delay;
// Set the command time
cmd_time = uhd::time_spec_t::from_ticks(ticks, tick_rate);
_iface->set_command_time(cmd_time);
// Assert SYNC
ubx_gpio_field_info_t lo1_field_info =
_gpio_map.find(dir == TX_DIRECTION ? TXLO1_SYNC : RXLO1_SYNC)->second;
ubx_gpio_field_info_t lo2_field_info =
_gpio_map.find(dir == TX_DIRECTION ? TXLO2_SYNC : RXLO2_SYNC)->second;
uint16_t value = (1 << lo1_field_info.offset) | (1 << lo2_field_info.offset);
uint16_t mask = lo1_field_info.mask | lo2_field_info.mask;
dboard_iface::unit_t unit = lo1_field_info.unit;
UHD_ASSERT_THROW(lo1_field_info.unit == lo2_field_info.unit);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_IDLE, value, mask);
cmd_time += uhd::time_spec_t(1 / pfd_freq);
_iface->set_command_time(cmd_time);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY, value, mask);
cmd_time += uhd::time_spec_t(1 / pfd_freq);
_iface->set_command_time(cmd_time);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY, value, mask);
cmd_time += uhd::time_spec_t(1 / pfd_freq);
_iface->set_command_time(cmd_time);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX, value, mask);
// De-assert SYNC
// Head of line blocking means the command time does not need to be set.
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_IDLE, 0, mask);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY, 0, mask);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY, 0, mask);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX, 0, mask);
}
}
/***********************************************************************
* Board Control Handling
**********************************************************************/
sensor_value_t get_locked(const std::string& pll_name)
{
std::lock_guard<std::mutex> lock(_mutex);
assert_has(ubx_plls, pll_name, "ubx pll name");
if (pll_name == "TXLO") {
_txlo_locked = (get_gpio_field(TX_LO_LOCKED) != 0);
return sensor_value_t("TXLO", _txlo_locked, "locked", "unlocked");
} else if (pll_name == "RXLO") {
_rxlo_locked = (get_gpio_field(RX_LO_LOCKED) != 0);
return sensor_value_t("RXLO", _rxlo_locked, "locked", "unlocked");
}
return sensor_value_t("Unknown", false, "locked", "unlocked");
}
std::string set_tx_ant(const std::string& ant)
{
// validate input
assert_has(ubx_tx_antennas, ant, "ubx tx antenna name");
set_cpld_field(CAL_ENABLE, (ant == "CAL"));
write_cpld_reg();
return ant;
}
// Set RX antennas
std::string set_rx_ant(const std::string& ant)
{
std::lock_guard<std::mutex> lock(_mutex);
// validate input
assert_has(ubx_rx_antennas, ant, "ubx rx antenna name");
// There can be long transients on TX, so force on the TX PA
// except when in powersave mode (to save power) or on early
// boards that had lower TX-RX isolation when the RX antenna
// is set to TX/RX (to prevent higher noise floor on RX).
// Setting the xcvr_mode to TDD will force on the PA when
// not in powersave mode regardless of the board revision.
if (ant == "TX/RX") {
set_gpio_field(RX_ANT, 0);
// Force on TX PA for boards with high isolation or if the user sets the TDD
// mode
set_cpld_field(TXDRV_FORCEON,
(_power_mode == POWERSAVE
? 0
: _high_isolation or _xcvr_mode == TDD ? 1 : 0));
} else {
set_gpio_field(RX_ANT, 1);
set_cpld_field(
TXDRV_FORCEON, (_power_mode == POWERSAVE ? 0 : 1)); // Keep PA on
}
write_gpio();
write_cpld_reg();
return ant;
}
/***********************************************************************
* Gain Handling
**********************************************************************/
double set_tx_gain(double gain)
{
std::lock_guard<std::mutex> lock(_mutex);
gain = ubx_tx_gain_range.clip(gain);
int attn_code = int(std::floor(gain * 2));
_ubx_tx_atten_val = ((attn_code & 0x3F) << 10);
set_gpio_field(TX_GAIN, attn_code);
write_gpio();
UHD_LOGGER_TRACE("UBX")
<< boost::format("UBX TX Gain: %f dB, Code: %d, IO Bits 0x%04x") % gain
% attn_code % _ubx_tx_atten_val;
_tx_gain = gain;
return gain;
}
double set_rx_gain(double gain)
{
std::lock_guard<std::mutex> lock(_mutex);
gain = ubx_rx_gain_range.clip(gain);
int attn_code = int(std::floor(gain * 2));
_ubx_rx_atten_val = ((attn_code & 0x3F) << 10);
set_gpio_field(RX_GAIN, attn_code);
write_gpio();
UHD_LOGGER_TRACE("UBX")
<< boost::format("UBX RX Gain: %f dB, Code: %d, IO Bits 0x%04x") % gain
% attn_code % _ubx_rx_atten_val;
_rx_gain = gain;
return gain;
}
/***********************************************************************
* Frequency Handling
**********************************************************************/
double set_tx_freq(double freq)
{
std::lock_guard<std::mutex> lock(_mutex);
double freq_lo1 = 0.0;
double freq_lo2 = 0.0;
double ref_freq = _iface->get_clock_rate(dboard_iface::UNIT_TX);
bool is_int_n = false;
/*
* If the user sets 'mode_n=integer' in the tuning args, the user wishes to
* tune in Integer-N mode, which can result in better spur
* performance on some mixers. The default is fractional tuning.
*/
property_tree::sptr subtree = this->get_tx_subtree();
device_addr_t tune_args = subtree->access<device_addr_t>("tune_args").get();
is_int_n = boost::iequals(tune_args.get("mode_n", ""), "integer");
UHD_LOGGER_TRACE("UBX")
<< boost::format("UBX TX: the requested frequency is %f MHz") % (freq / 1e6);
double target_pfd_freq = _tx_target_pfd_freq;
if (is_int_n and tune_args.has_key("int_n_step")) {
target_pfd_freq = tune_args.cast<double>("int_n_step", _tx_target_pfd_freq);
if (target_pfd_freq > _tx_target_pfd_freq) {
UHD_LOGGER_WARNING("UBX")
<< boost::format(
"Requested int_n_step of %f MHz too large, clipping to %f MHz")
% (target_pfd_freq / 1e6) % (_tx_target_pfd_freq / 1e6);
target_pfd_freq = _tx_target_pfd_freq;
}
}
// Clip the frequency to the valid range
freq = ubx_freq_range.clip(freq);
// Power up/down LOs
if (_txlo1->is_shutdown())
_txlo1->power_up();
if (_txlo2->is_shutdown() and (_power_mode == PERFORMANCE or freq < (500 * fMHz)))
_txlo2->power_up();
else if (freq >= 500 * fMHz and _power_mode == POWERSAVE)
_txlo2->shutdown();
// Set up LOs for phase sync if command time is set
uhd::time_spec_t cmd_time = _iface->get_command_time();
if (cmd_time != uhd::time_spec_t(0.0)) {
_txlo1->config_for_sync(true);
if (not _txlo2->is_shutdown())
_txlo2->config_for_sync(true);
} else {
_txlo1->config_for_sync(false);
if (not _txlo2->is_shutdown())
_txlo2->config_for_sync(false);
}
// Set up registers for the requested frequency
if (freq < (500 * fMHz)) {
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 1);
set_cpld_field(TXLO1_FSEL1, 0);
set_cpld_field(TXLB_SEL, 1);
set_cpld_field(TXHB_SEL, 0);
// Set LO1 to IF of 2100 MHz (offset from RX IF to reduce leakage)
freq_lo1 =
_txlo1->set_frequency(2100 * fMHz, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
// Set LO2 to IF minus desired frequency
freq_lo2 = _txlo2->set_frequency(
freq_lo1 - freq, ref_freq, target_pfd_freq, is_int_n);
_txlo2->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq >= (500 * fMHz)) && (freq <= (800 * fMHz))) {
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 0);
set_cpld_field(TXLO1_FSEL1, 1);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq > (800 * fMHz)) && (freq <= (1000 * fMHz))) {
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 0);
set_cpld_field(TXLO1_FSEL1, 1);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
} else if ((freq > (1000 * fMHz)) && (freq <= (2200 * fMHz))) {
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 1);
set_cpld_field(TXLO1_FSEL1, 0);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq > (2200 * fMHz)) && (freq <= (2500 * fMHz))) {
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 1);
set_cpld_field(TXLO1_FSEL1, 0);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq > (2500 * fMHz)) && (freq <= (6000 * fMHz))) {
set_cpld_field(TXLO1_FSEL3, 1);
set_cpld_field(TXLO1_FSEL2, 0);
set_cpld_field(TXLO1_FSEL1, 0);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
}
// To reduce the number of commands issued to the device, write to the
// SPI destination already addressed first. This avoids the writes to
// the GPIO registers to route the SPI to the same destination.
switch (get_gpio_field(SPI_ADDR)) {
case TXLO1:
_txlo1->commit();
if (freq < (500 * fMHz))
_txlo2->commit();
write_cpld_reg();
break;
case TXLO2:
if (freq < (500 * fMHz))
_txlo2->commit();
_txlo1->commit();
write_cpld_reg();
break;
default:
write_cpld_reg();
_txlo1->commit();
if (freq < (500 * fMHz))
_txlo2->commit();
break;
}
if (cmd_time != uhd::time_spec_t(0.0) and _txlo1->can_sync()) {
sync_phase(cmd_time, TX_DIRECTION);
}
_tx_freq = freq_lo1 - freq_lo2;
_txlo1_freq = freq_lo1;
_txlo2_freq = freq_lo2;
UHD_LOGGER_TRACE("UBX")
<< boost::format("UBX TX: the actual frequency is %f MHz") % (_tx_freq / 1e6);
return _tx_freq;
}
double set_rx_freq(double freq)
{
std::lock_guard<std::mutex> lock(_mutex);
double freq_lo1 = 0.0;
double freq_lo2 = 0.0;
double ref_freq = _iface->get_clock_rate(dboard_iface::UNIT_RX);
bool is_int_n = false;
UHD_LOGGER_TRACE("UBX")
<< boost::format("UBX RX: the requested frequency is %f MHz") % (freq / 1e6);
property_tree::sptr subtree = this->get_rx_subtree();
device_addr_t tune_args = subtree->access<device_addr_t>("tune_args").get();
is_int_n = boost::iequals(tune_args.get("mode_n", ""), "integer");
double target_pfd_freq = _rx_target_pfd_freq;
if (is_int_n and tune_args.has_key("int_n_step")) {
target_pfd_freq = tune_args.cast<double>("int_n_step", _rx_target_pfd_freq);
if (target_pfd_freq > _rx_target_pfd_freq) {
UHD_LOGGER_WARNING("UBX")
<< boost::format(
"Requested int_n_step of %f Mhz too large, clipping to %f MHz")
% (target_pfd_freq / 1e6) % (_rx_target_pfd_freq / 1e6);
target_pfd_freq = _rx_target_pfd_freq;
}
}
// Clip the frequency to the valid range
freq = ubx_freq_range.clip(freq);
// Power up/down LOs
if (_rxlo1->is_shutdown())
_rxlo1->power_up();
if (_rxlo2->is_shutdown() and (_power_mode == PERFORMANCE or freq < 500 * fMHz))
_rxlo2->power_up();
else if (freq >= 500 * fMHz and _power_mode == POWERSAVE)
_rxlo2->shutdown();
// Set up LOs for phase sync if command time is set
uhd::time_spec_t cmd_time = _iface->get_command_time();
if (cmd_time != uhd::time_spec_t(0.0)) {
_rxlo1->config_for_sync(true);
if (not _rxlo2->is_shutdown())
_rxlo2->config_for_sync(true);
} else {
_rxlo1->config_for_sync(false);
if (not _rxlo2->is_shutdown())
_rxlo2->config_for_sync(false);
}
// Work with frequencies
if (freq < 100 * fMHz) {
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 1);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 1);
set_cpld_field(RXHB_SEL, 0);
// Set LO1 to IF of 2380 MHz (2440 MHz filter center minus 60 MHz offset to
// minimize LO leakage)
freq_lo1 =
_rxlo1->set_frequency(2380 * fMHz, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
// Set LO2 to IF minus desired frequency
freq_lo2 = _rxlo2->set_frequency(
freq_lo1 - freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo2->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq >= 100 * fMHz) && (freq < 500 * fMHz)) {
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 1);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 1);
set_cpld_field(RXHB_SEL, 0);
// Set LO1 to IF of 2440 (center of filter)
freq_lo1 =
_rxlo1->set_frequency(2440 * fMHz, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
// Set LO2 to IF minus desired frequency
freq_lo2 = _rxlo2->set_frequency(
freq_lo1 - freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq >= 500 * fMHz) && (freq < 800 * fMHz)) {
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 1);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq >= 800 * fMHz) && (freq < 1000 * fMHz)) {
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 1);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
} else if ((freq >= 1000 * fMHz) && (freq < 1500 * fMHz)) {
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 1);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq >= 1500 * fMHz) && (freq < 2200 * fMHz)) {
set_cpld_field(SEL_LNA1, 1);
set_cpld_field(SEL_LNA2, 0);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 1);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq >= 2200 * fMHz) && (freq < 2500 * fMHz)) {
set_cpld_field(SEL_LNA1, 1);
set_cpld_field(SEL_LNA2, 0);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 1);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
} else if ((freq >= 2500 * fMHz) && (freq <= 6000 * fMHz)) {
set_cpld_field(SEL_LNA1, 1);
set_cpld_field(SEL_LNA2, 0);
set_cpld_field(RXLO1_FSEL3, 1);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
}
// To reduce the number of commands issued to the device, write to the
// SPI destination already addressed first. This avoids the writes to
// the GPIO registers to route the SPI to the same destination.
switch (get_gpio_field(SPI_ADDR)) {
case RXLO1:
_rxlo1->commit();
if (freq < (500 * fMHz))
_rxlo2->commit();
write_cpld_reg();
break;
case RXLO2:
if (freq < (500 * fMHz))
_rxlo2->commit();
_rxlo1->commit();
write_cpld_reg();
break;
default:
write_cpld_reg();
_rxlo1->commit();
if (freq < (500 * fMHz))
_rxlo2->commit();
break;
}
if (cmd_time != uhd::time_spec_t(0.0) and _rxlo1->can_sync()) {
sync_phase(cmd_time, RX_DIRECTION);
}
_rx_freq = freq_lo1 - freq_lo2;
_rxlo1_freq = freq_lo1;
_rxlo2_freq = freq_lo2;
UHD_LOGGER_TRACE("UBX")
<< boost::format("UBX RX: the actual frequency is %f MHz") % (_rx_freq / 1e6);
return _rx_freq;
}
/***********************************************************************
* Setting Modes
**********************************************************************/
void set_power_mode(std::string mode)
{
std::lock_guard<std::mutex> lock(_mutex);
if (mode == "performance") {
// performance mode attempts to reduce tuning and settling time
// as much as possible without adding noise.
// RXLNA2 has a ~100ms warm up time, so the LNAs are forced on
// here to reduce the settling time as much as possible. The
// force on signals are gated by the LNA selection so the LNAs
// are turned on/off during tuning. Unfortunately, that means
// there is still a long settling time when tuning from the high
// band (>1.5 GHz) to the low band (<1.5 GHz).
set_cpld_field(RXLNA1_FORCEON, 1);
set_cpld_field(RXLNA2_FORCEON, 1);
// Placeholders in case some components need to be forced on to
// reduce settling time. Note that some FORCEON lines are still gated
// by other bits in the CPLD register and are asserted during
// frequency tuning.
set_cpld_field(RXAMP_FORCEON, 1);
set_cpld_field(RXDEMOD_FORCEON, 1);
set_cpld_field(RXDRV_FORCEON, 1);
set_cpld_field(RXMIXER_FORCEON, 0);
set_cpld_field(RXLO1_FORCEON, 1);
set_cpld_field(RXLO2_FORCEON, 1);
/*
//set_cpld_field(TXDRV_FORCEON, 1); // controlled by RX antenna selection
set_cpld_field(TXMOD_FORCEON, 0);
set_cpld_field(TXMIXER_FORCEON, 0);
set_cpld_field(TXLO1_FORCEON, 0);
set_cpld_field(TXLO2_FORCEON, 0);
*/
write_cpld_reg();
_power_mode = PERFORMANCE;
} else if (mode == "powersave") {
// powersave mode attempts to use the least amount of power possible
// by powering on components only when needed. Longer tuning and
// settling times are expected.
// Clear the LNA force on bits.
set_cpld_field(RXLNA1_FORCEON, 0);
set_cpld_field(RXLNA2_FORCEON, 0);
/*
// Placeholders in case other force on bits need to be set or cleared.
set_cpld_field(RXAMP_FORCEON, 0);
set_cpld_field(RXDEMOD_FORCEON, 0);
set_cpld_field(RXDRV_FORCEON, 0);
set_cpld_field(RXMIXER_FORCEON, 0);
set_cpld_field(RXLO1_FORCEON, 0);
set_cpld_field(RXLO2_FORCEON, 0);
//set_cpld_field(TXDRV_FORCEON, 1); // controlled by RX antenna selection
set_cpld_field(TXMOD_FORCEON, 0);
set_cpld_field(TXMIXER_FORCEON, 0);
set_cpld_field(TXLO1_FORCEON, 0);
set_cpld_field(TXLO2_FORCEON, 0);
*/
write_cpld_reg();
_power_mode = POWERSAVE;
}
}
void set_xcvr_mode(std::string mode)
{
// TO DO: Add implementation
// The intent is to add behavior based on whether
// the board is in TX, RX, or full duplex mode
// to reduce power consumption and RF noise.
boost::to_upper(mode);
if (mode == "FDX") {
_xcvr_mode = FDX;
} else if (mode == "TDD") {
_xcvr_mode = TDD;
set_cpld_field(TXDRV_FORCEON, 1);
write_cpld_reg();
} else if (mode == "TX") {
_xcvr_mode = TX;
} else if (mode == "RX") {
_xcvr_mode = RX;
} else {
throw uhd::value_error("invalid xcvr_mode");
}
}
void set_sync_delay(bool is_tx, int64_t value)
{
if (is_tx)
_tx_sync_delay = value;
else
_rx_sync_delay = value;
}
void set_temp_comp_mode(std::string mode)
{
const bool enabled = [mode]() {
if (mode == "enabled") {
return true;
} else if (mode == "disabled") {
return false;
} else {
throw uhd::value_error("invalid temperature_compensation_mode");
}
}();
std::lock_guard<std::mutex> lock(_mutex);
for (const auto& lo : {_txlo1, _txlo2, _rxlo1, _rxlo2}) {
lo->set_auto_retune(enabled);
}
}
/***********************************************************************
* Variables
**********************************************************************/
dboard_iface::sptr _iface;
std::mutex _spi_mutex;
std::mutex _mutex;
ubx_cpld_reg_t _cpld_reg;
uint32_t _prev_cpld_value;
std::map<ubx_gpio_field_id_t, ubx_gpio_field_info_t> _gpio_map;
std::shared_ptr<max287x_iface> _txlo1;
std::shared_ptr<max287x_iface> _txlo2;
std::shared_ptr<max287x_iface> _rxlo1;
std::shared_ptr<max287x_iface> _rxlo2;
double _tx_target_pfd_freq;
double _rx_target_pfd_freq;
double _tx_gain;
double _rx_gain;
double _tx_freq;
double _txlo1_freq;
double _txlo2_freq;
double _rx_freq;
double _rxlo1_freq;
double _rxlo2_freq;
bool _rxlo_locked;
bool _txlo_locked;
std::string _rx_ant;
int _ubx_tx_atten_val;
int _ubx_rx_atten_val;
power_mode_t _power_mode;
xcvr_mode_t _xcvr_mode;
size_t _rev;
ubx_gpio_reg_t _tx_gpio_reg;
ubx_gpio_reg_t _rx_gpio_reg;
int64_t _tx_sync_delay;
int64_t _rx_sync_delay;
bool _high_isolation;
};
/***********************************************************************
* Register the UBX dboard (min freq, max freq, rx div2, tx div2)
**********************************************************************/
static dboard_base::sptr make_ubx(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(new ubx_xcvr(args));
}
UHD_STATIC_BLOCK(reg_ubx_dboards)
{
dboard_manager::register_dboard(
UBX_PROTO_V3_RX_ID, UBX_PROTO_V3_TX_ID, &make_ubx, "UBX v0.3");
dboard_manager::register_dboard(
UBX_PROTO_V4_RX_ID, UBX_PROTO_V4_TX_ID, &make_ubx, "UBX v0.4");
dboard_manager::register_dboard(
UBX_V1_40MHZ_RX_ID, UBX_V1_40MHZ_TX_ID, &make_ubx, "UBX-40 v1");
dboard_manager::register_dboard(
UBX_V1_160MHZ_RX_ID, UBX_V1_160MHZ_TX_ID, &make_ubx, "UBX-160 v1");
dboard_manager::register_dboard(
UBX_V2_40MHZ_RX_ID, UBX_V2_40MHZ_TX_ID, &make_ubx, "UBX-40 v2");
dboard_manager::register_dboard(
UBX_V2_160MHZ_RX_ID, UBX_V2_160MHZ_TX_ID, &make_ubx, "UBX-160 v2");
dboard_manager::register_dboard(
UBX_LP_160MHZ_RX_ID, UBX_LP_160MHZ_TX_ID, &make_ubx, "UBX-160-LP");
dboard_manager::register_dboard(
UBX_TDD_160MHZ_RX_ID, UBX_TDD_160MHZ_TX_ID, &make_ubx, "UBX-TDD");
}
|