1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "e3xx_radio_control_impl.hpp"
#include "e3xx_constants.hpp"
#include <uhd/types/direction.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <algorithm>
#include <chrono>
#include <cmath>
#include <cstdlib>
#include <sstream>
#include <thread>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
using namespace uhd::math::fp_compare;
/******************************************************************************
* Structors
*****************************************************************************/
e3xx_radio_control_impl::e3xx_radio_control_impl(make_args_ptr make_args)
: radio_control_impl(std::move(make_args))
{
RFNOC_LOG_TRACE("Entering e3xx_radio_control_impl ctor...");
UHD_ASSERT_THROW(get_block_id().get_block_count() == 0);
UHD_ASSERT_THROW(
std::max(get_num_output_ports(), get_num_input_ports()) == E3XX_NUM_CHANS);
UHD_ASSERT_THROW(get_mb_controller());
_e3xx_mb_control = std::dynamic_pointer_cast<mpmd_mb_controller>(get_mb_controller());
UHD_ASSERT_THROW(_e3xx_mb_control);
_e3xx_timekeeper = std::dynamic_pointer_cast<mpmd_mb_controller::mpmd_timekeeper>(
_e3xx_mb_control->get_timekeeper(0));
UHD_ASSERT_THROW(_e3xx_timekeeper);
_rpcc = _e3xx_mb_control->get_rpc_client();
UHD_ASSERT_THROW(_rpcc);
RFNOC_LOG_TRACE("Instantiating AD9361 control object...");
_ad9361 = make_rpc(_rpcc);
_init_defaults();
_init_peripherals();
_init_prop_tree();
// Properties
for (auto& samp_rate_prop : _samp_rate_in) {
samp_rate_prop.set(_master_clock_rate);
}
for (auto& samp_rate_prop : _samp_rate_out) {
samp_rate_prop.set(_master_clock_rate);
}
}
e3xx_radio_control_impl::~e3xx_radio_control_impl()
{
RFNOC_LOG_TRACE("e3xx_radio_control_impl::dtor() ");
}
void e3xx_radio_control_impl::deinit()
{
_db_gpio.clear();
_leds_gpio.clear();
_fp_gpio.reset();
_wb_ifaces.clear();
}
/******************************************************************************
* API Calls
*****************************************************************************/
bool e3xx_radio_control_impl::check_topology(const std::vector<size_t>& connected_inputs,
const std::vector<size_t>& connected_outputs)
{
if (!node_t::check_topology(connected_inputs, connected_outputs)) {
return false;
}
// Now we know that the connected ports are either 0 or 1
// Check if we're running a 2x1 or 1x2 configuration -- the device does not
// support this!
if ((connected_outputs.size() == 1 && connected_inputs.size() == 2)
|| (connected_outputs.size() == 2 && connected_inputs.size() == 1)) {
const std::string err_msg("Invalid channel configuration: This device does not "
"support 1 TX x 2 RX or 2 TX x 1 RX configurations!");
RFNOC_LOG_ERROR(err_msg);
throw uhd::runtime_error(err_msg);
}
// mapping of frontend to radio perif index
const size_t FE0 = _fe_swap ? 1 : 0;
const size_t FE1 = _fe_swap ? 0 : 1;
const bool tx_fe0_active = std::any_of(connected_inputs.begin(),
connected_inputs.end(),
[FE0](const size_t port) { return port == FE0; });
const bool tx_fe1_active = std::any_of(connected_inputs.begin(),
connected_inputs.end(),
[FE1](const size_t port) { return port == FE1; });
const bool rx_fe0_active = std::any_of(connected_outputs.begin(),
connected_outputs.end(),
[FE0](const size_t port) { return port == FE0; });
const bool rx_fe1_active = std::any_of(connected_outputs.begin(),
connected_outputs.end(),
[FE1](const size_t port) { return port == FE1; });
RFNOC_LOG_TRACE("TX FE0 Active: " << tx_fe0_active);
RFNOC_LOG_TRACE("TX FE1 Active: " << tx_fe1_active);
RFNOC_LOG_TRACE("RX FE0 Active: " << rx_fe0_active);
RFNOC_LOG_TRACE("RX FE1 Active: " << rx_fe1_active);
// setup the active chains in the codec
if (connected_inputs.size() + connected_outputs.size() == 0) {
// Ensure at least one RX chain is enabled so AD9361 outputs a sample clock
this->set_streaming_mode(true, false, true, false);
} else {
this->set_streaming_mode(
tx_fe0_active, tx_fe1_active, rx_fe0_active, rx_fe1_active);
}
return true;
}
void e3xx_radio_control_impl::set_streaming_mode(
const bool tx1, const bool tx2, const bool rx1, const bool rx2)
{
RFNOC_LOG_TRACE("Setting streaming mode...")
const size_t num_rx = rx1 + rx2;
const size_t num_tx = tx1 + tx2;
// setup the active chains in the codec
if ((num_rx + num_tx) == 0) {
// Ensure at least one RX chain is enabled so AD9361 outputs a sample clock
_ad9361->set_active_chains(true, false, true, false);
} else {
// setup the active chains in the codec
_ad9361->set_active_chains(tx1, tx2, rx1, rx2);
}
// setup 1R1T/2R2T mode in catalina and fpga
// The Catalina interface in the fpga needs to know which TX channel to use for
// the data on the LVDS lines.
if ((num_rx == 2) or (num_tx == 2)) {
// AD9361 is in 1R1T mode
_ad9361->set_timing_mode(this->get_default_timing_mode());
this->set_channel_mode(MIMO);
} else {
// AD9361 is in 1R1T mode
_ad9361->set_timing_mode(TIMING_MODE_1R1T);
// Set to SIS0_TX1 if we're using the second TX antenna, otherwise
// default to SISO_TX0
this->set_channel_mode(tx2 ? SISO_TX1 : SISO_TX0);
}
}
void e3xx_radio_control_impl::set_channel_mode(const std::string& channel_mode)
{
// MIMO for 2R2T mode for 2 channels
// SISO_TX1 for 1R1T mode for 1 channel - TX1
// SISO_TX0 for 1R1T mode for 1 channel - TX0
_rpcc->request_with_token<void>("set_channel_mode", channel_mode);
}
double e3xx_radio_control_impl::set_rate(const double rate)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
RFNOC_LOG_DEBUG("Asking for clock rate " << rate / 1e6 << " MHz\n");
// On E3XX, tick rate and samp rate are always the same
double actual_tick_rate = _ad9361->set_clock_rate(rate);
RFNOC_LOG_DEBUG("Actual clock rate " << actual_tick_rate / 1e6 << " MHz\n");
set_tick_rate(actual_tick_rate);
radio_control_impl::set_rate(actual_tick_rate);
_e3xx_timekeeper->update_tick_rate(rate);
return rate;
}
uhd::meta_range_t e3xx_radio_control_impl::get_rate_range() const
{
return _ad9361->get_clock_rate_range();
}
/******************************************************************************
* RF API calls
*****************************************************************************/
void e3xx_radio_control_impl::set_tx_antenna(const std::string& ant, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
if (ant != get_tx_antenna(chan)) {
throw uhd::value_error(
str(boost::format("[%s] Requesting invalid TX antenna value: %s")
% get_unique_id() % ant));
}
radio_control_impl::set_tx_antenna(ant, chan);
// We can't actually set the TX antenna, so let's stop here.
}
void e3xx_radio_control_impl::set_rx_antenna(const std::string& ant, const size_t chan)
{
UHD_ASSERT_THROW(chan <= E3XX_NUM_CHANS);
std::lock_guard<std::recursive_mutex> l(_set_lock);
if (std::find(E3XX_RX_ANTENNAS.begin(), E3XX_RX_ANTENNAS.end(), ant)
== E3XX_RX_ANTENNAS.end()) {
throw uhd::value_error(
str(boost::format("[%s] Requesting invalid RX antenna value: %s")
% get_unique_id() % ant));
}
RFNOC_LOG_TRACE("Setting RX antenna to " << ant << " for chan " << chan);
radio_control_impl::set_rx_antenna(ant, chan);
_set_atr_bits(chan);
}
double e3xx_radio_control_impl::set_tx_frequency(const double freq, const size_t chan)
{
RFNOC_LOG_TRACE("set_tx_frequency(f=" << freq << ", chan=" << chan << ")");
std::lock_guard<std::recursive_mutex> l(_set_lock);
double clipped_freq = uhd::clip(freq, AD9361_TX_MIN_FREQ, AD9361_TX_MAX_FREQ);
double coerced_freq =
_ad9361->tune(get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), clipped_freq);
// The E3xx devices have one LO for TX, so if we change one channel's
// frequency, we change the other, too
for (size_t chan_idx = 0; chan_idx < E3XX_NUM_CHANS; ++chan_idx) {
radio_control_impl::set_tx_frequency(coerced_freq, chan_idx);
}
// Front-end switching
_set_atr_bits(chan);
return coerced_freq;
}
double e3xx_radio_control_impl::set_rx_frequency(const double freq, const size_t chan)
{
RFNOC_LOG_TRACE("set_rx_frequency(f=" << freq << ", chan=" << chan << ")");
std::lock_guard<std::recursive_mutex> l(_set_lock);
double clipped_freq = uhd::clip(freq, AD9361_RX_MIN_FREQ, AD9361_RX_MAX_FREQ);
double coerced_freq =
_ad9361->tune(get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), clipped_freq);
// The E3xx devices have one LO for RX, so if we change one channel's
// frequency, we change the other, too
for (size_t chan_idx = 0; chan_idx < E3XX_NUM_CHANS; ++chan_idx) {
radio_control_impl::set_rx_frequency(coerced_freq, chan_idx);
}
// Front-end switching
_set_atr_bits(chan);
return coerced_freq;
}
void e3xx_radio_control_impl::set_rx_agc(const bool enb, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
RFNOC_LOG_TRACE("set_rx_agc(enb=" << enb << ", chan=" << chan << ")");
const std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
_ad9361->set_agc(rx_fe, enb);
}
double e3xx_radio_control_impl::set_rx_bandwidth(
const double bandwidth, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
double clipped_bw = _ad9361->set_bw_filter(
get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), bandwidth);
return radio_control_impl::set_rx_bandwidth(clipped_bw, chan);
}
double e3xx_radio_control_impl::set_tx_bandwidth(
const double bandwidth, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
double clipped_bw = _ad9361->set_bw_filter(
get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), bandwidth);
return radio_control_impl::set_tx_bandwidth(clipped_bw, chan);
}
double e3xx_radio_control_impl::set_tx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
RFNOC_LOG_TRACE("set_tx_gain(gain=" << gain << ", chan=" << chan << ")");
double clip_gain = uhd::clip(gain, AD9361_MIN_TX_GAIN, AD9361_MAX_TX_GAIN);
_ad9361->set_gain(get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), clip_gain);
radio_control_impl::set_tx_gain(clip_gain, chan);
return clip_gain;
}
double e3xx_radio_control_impl::set_rx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
UHD_ASSERT_THROW(chan < get_num_output_ports());
RFNOC_LOG_TRACE("set_rx_gain(gain=" << gain << ", chan=" << chan << ")");
double clip_gain = uhd::clip(gain, AD9361_MIN_RX_GAIN, AD9361_MAX_RX_GAIN);
_ad9361->set_gain(get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), clip_gain);
radio_control_impl::set_rx_gain(clip_gain, chan);
return clip_gain;
}
std::vector<std::string> e3xx_radio_control_impl::get_tx_antennas(const size_t) const
{
return {E3XX_DEFAULT_TX_ANTENNA};
}
std::vector<std::string> e3xx_radio_control_impl::get_rx_antennas(const size_t) const
{
return E3XX_RX_ANTENNAS;
}
freq_range_t e3xx_radio_control_impl::get_tx_frequency_range(const size_t) const
{
return freq_range_t(AD9361_TX_MIN_FREQ, AD9361_TX_MAX_FREQ, 1.0);
}
freq_range_t e3xx_radio_control_impl::get_rx_frequency_range(const size_t) const
{
return freq_range_t(AD9361_RX_MIN_FREQ, AD9361_RX_MAX_FREQ, 1.0);
}
uhd::gain_range_t e3xx_radio_control_impl::get_tx_gain_range(const size_t) const
{
return meta_range_t(AD9361_MIN_TX_GAIN, AD9361_MAX_TX_GAIN, AD9361_TX_GAIN_STEP);
}
uhd::gain_range_t e3xx_radio_control_impl::get_rx_gain_range(const size_t) const
{
return meta_range_t(AD9361_MIN_RX_GAIN, AD9361_MAX_RX_GAIN, AD9361_RX_GAIN_STEP);
}
meta_range_t e3xx_radio_control_impl::get_tx_bandwidth_range(size_t) const
{
return meta_range_t(AD9361_TX_MIN_BANDWIDTH, AD9361_TX_MAX_BANDWIDTH);
}
meta_range_t e3xx_radio_control_impl::get_rx_bandwidth_range(size_t) const
{
return meta_range_t(AD9361_RX_MIN_BANDWIDTH, AD9361_RX_MAX_BANDWIDTH);
}
/**************************************************************************
* Calibration-Related API Calls
*************************************************************************/
void e3xx_radio_control_impl::set_rx_dc_offset(const bool enb, size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
RFNOC_LOG_TRACE("set_rx_dc_offset(enb=" << enb << ", chan=" << chan << ")");
const std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
_ad9361->set_dc_offset_auto(rx_fe, enb);
}
void e3xx_radio_control_impl::set_rx_iq_balance(const bool enb, size_t chan)
{
std::lock_guard<std::recursive_mutex> l(_set_lock);
RFNOC_LOG_TRACE("set_rx_iq_balance(enb=" << enb << ", chan=" << chan << ")");
const std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
_ad9361->set_iq_balance_auto(rx_fe, enb);
}
/**************************************************************************
* GPIO Controls
*************************************************************************/
void e3xx_radio_control_impl::set_gpio_attr(
const std::string& bank, const std::string& attr, const uint32_t value)
{
if (bank != get_gpio_banks().front()) {
RFNOC_LOG_ERROR("Invalid GPIO bank: " << bank);
throw uhd::key_error("Invalid GPIO bank!");
}
if (!gpio_atr::gpio_attr_rev_map.count(attr)) {
RFNOC_LOG_ERROR("Invalid GPIO attr: " << attr);
throw uhd::key_error("Invalid GPIO attr!");
}
const gpio_atr::gpio_attr_t gpio_attr = gpio_atr::gpio_attr_rev_map.at(attr);
if (gpio_attr == gpio_atr::GPIO_READBACK) {
RFNOC_LOG_WARNING("Cannot set READBACK attr.");
return;
}
_fp_gpio->set_gpio_attr(gpio_attr, value);
}
uint32_t e3xx_radio_control_impl::get_gpio_attr(
const std::string& bank, const std::string& attr)
{
if (bank != get_gpio_banks().front()) {
RFNOC_LOG_ERROR("Invalid GPIO bank: " << bank);
throw uhd::key_error("Invalid GPIO bank!");
}
const gpio_atr::gpio_attr_t gpio_attr = gpio_atr::gpio_attr_rev_map.at(attr);
return _fp_gpio->get_attr_reg(gpio_attr);
}
/******************************************************************************
* Sensor API
*****************************************************************************/
std::vector<std::string> e3xx_radio_control_impl::get_rx_sensor_names(const size_t) const
{
return _rx_sensor_names;
}
uhd::sensor_value_t e3xx_radio_control_impl::get_rx_sensor(
const std::string& sensor_name, const size_t chan)
{
return sensor_value_t(_rpcc->request_with_token<sensor_value_t::sensor_map_t>(
_rpc_prefix + "get_sensor", "RX", sensor_name, chan));
}
std::vector<std::string> e3xx_radio_control_impl::get_tx_sensor_names(const size_t) const
{
return _tx_sensor_names;
}
uhd::sensor_value_t e3xx_radio_control_impl::get_tx_sensor(
const std::string& sensor_name, const size_t chan)
{
return sensor_value_t(_rpcc->request_with_token<sensor_value_t::sensor_map_t>(
_rpc_prefix + "get_sensor", "TX", sensor_name, chan));
}
/* loopback_self_test checks the integrity of the FPGA->AD936x->FPGA sample interface.
The AD936x is put in loopback mode that sends the TX data unchanged to the RX side.
A test value is written to the codec_idle register in the TX side of the radio.
The readback register is then used to capture the values on the TX and RX sides
simultaneously for comparison. It is a reasonably effective test for AC timing
since I/Q Ch0/Ch1 alternate over the same wires. Note, however, that it uses
whatever timing is configured at the time the test is called rather than select
worst case conditions to stress the interface.
Note: This currently only tests 2R2T mode
*/
void e3xx_radio_control_impl::loopback_self_test(const size_t chan)
{
// Save current rate before running this test
const double current_rate = this->get_rate();
// Set 2R2T mode, stream on all channels
this->set_streaming_mode(true, true, true, true);
_ad9361->set_clock_rate(30.72e6);
// Put AD936x in loopback mode
_ad9361->data_port_loopback(true);
RFNOC_LOG_INFO(
"Performing CODEC loopback test on channel " << std::to_string(chan) << " ... ");
size_t hash = size_t(time(NULL));
constexpr size_t loopback_count = 100;
constexpr size_t retries = 3;
// Allow some time for AD936x to enter loopback mode.
// There is no clear statement in the documentation of how long it takes,
// but UG-570 does say to "allow six ADC_CLK/64 clock cycles of flush time"
// when leaving the TX or RX states. That works out to ~75us at the
// minimum clock rate of 5 MHz, which lines up with test results.
// Sleeping 1ms is far more than enough.
std::this_thread::sleep_for(std::chrono::milliseconds(1));
bool test_fail = true;
while (test_fail) {
size_t tries = 0;
for (size_t i = 0; i < loopback_count; i++) {
// Create test word
boost::hash_combine(hash, i);
const uint32_t word32 = uint32_t(hash) & 0xfff0fff0;
// Write test word to codec_idle idle register (on TX side)
regs().poke32(regmap::RADIO_BASE_ADDR + chan * regmap::REG_CHAN_OFFSET
+ regmap::REG_TX_IDLE_VALUE,
word32);
// Read back values - TX is lower 32-bits and RX is upper 32-bits
const uint32_t rb_tx =
regs().peek32(regmap::RADIO_BASE_ADDR + chan * regmap::REG_CHAN_OFFSET
+ regmap::REG_TX_IDLE_VALUE);
const uint32_t rb_rx =
regs().peek32(regmap::RADIO_BASE_ADDR + chan * regmap::REG_CHAN_OFFSET
+ regmap::REG_RX_DATA);
// Compare TX and RX values to test word
test_fail = word32 != rb_tx or word32 != rb_rx;
if (test_fail) {
RFNOC_LOG_DEBUG(
"CODEC loopback test failure: "
<< boost::format("Expected: 0x%08X Received (TX/RX): 0x%08X/0x%08X")
% word32 % rb_tx % rb_rx);
if (tries < retries) {
// TODO: Investigate why loopback test sometimes fails
// Upon failure, setting the streaming mode again makes
// it work for some reason.
this->set_streaming_mode(true, true, true, true);
// Try again
RFNOC_LOG_DEBUG("Retrying CODEC loopback test for channel "
<< std::to_string(chan) << " ... ");
tries++;
break;
} else {
RFNOC_LOG_ERROR("CODEC loopback test failed!");
throw uhd::runtime_error("CODEC loopback test failed.");
}
}
}
}
RFNOC_LOG_INFO("CODEC loopback test passed");
// Zero out the idle data.
regs().poke32(regmap::RADIO_BASE_ADDR + chan * regmap::REG_CHAN_OFFSET
+ regmap::REG_TX_IDLE_VALUE,
0);
// Take AD936x out of loopback mode
_ad9361->data_port_loopback(false);
this->set_streaming_mode(true, false, true, false);
// Switch back to current rate
_ad9361->set_clock_rate(current_rate);
}
void e3xx_radio_control_impl::_identify_with_leds(const int identify_duration)
{
RFNOC_LOG_INFO(
"Running LED identification process for " << identify_duration << " seconds.");
auto end_time =
std::chrono::steady_clock::now() + std::chrono::seconds(identify_duration);
bool led_state = true;
while (std::chrono::steady_clock::now() < end_time) {
// Add update_leds
led_state = !led_state;
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
void e3xx_radio_control_impl::_set_atr_bits(const size_t chan)
{
const auto rx_freq = radio_control_impl::get_rx_frequency(chan);
const auto tx_freq = radio_control_impl::get_tx_frequency(chan);
const auto rx_ant = radio_control_impl::get_rx_antenna(chan);
const uint32_t rx_regs = this->get_rx_switches(chan, rx_freq, rx_ant);
const uint32_t tx_regs = this->get_tx_switches(chan, tx_freq);
const uint32_t idle_regs = this->get_idle_switches();
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_IDLE, idle_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_RX_ONLY, rx_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_TX_ONLY, tx_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_FULL_DUPLEX, rx_regs | tx_regs);
// The LED signal names are reversed, but are consistent with the schematic
const bool is_txrx = rx_ant == "TX/RX";
const int idle_led = 0;
const int rx_led = this->get_rx_led();
const int tx_led = this->get_tx_led();
const int txrx_led = this->get_txrx_led();
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_IDLE, idle_led);
_leds_gpio[chan]->set_atr_reg(
usrp::gpio_atr::ATR_REG_RX_ONLY, is_txrx ? txrx_led : rx_led);
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_TX_ONLY, tx_led);
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_FULL_DUPLEX, rx_led | tx_led);
}
void e3xx_radio_control_impl::set_db_eeprom(const eeprom_map_t& db_eeprom)
{
_rpcc->notify_with_token("set_db_eeprom", 0, db_eeprom);
}
eeprom_map_t e3xx_radio_control_impl::get_db_eeprom()
{
return _rpcc->request_with_token<eeprom_map_t>("get_db_eeprom", 0);
}
/**************************************************************************
* Filter API
*************************************************************************/
std::vector<std::string> e3xx_radio_control_impl::get_rx_filter_names(const size_t) const
{
return _rx_filter_names;
}
uhd::filter_info_base::sptr e3xx_radio_control_impl::get_rx_filter(
const std::string& name, const size_t chan)
{
return _ad9361->get_filter(
get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), name);
}
void e3xx_radio_control_impl::set_rx_filter(
const std::string& name, uhd::filter_info_base::sptr filter, const size_t chan)
{
_ad9361->set_filter(
get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), name, filter);
}
std::vector<std::string> e3xx_radio_control_impl::get_tx_filter_names(const size_t) const
{
return _tx_filter_names;
}
uhd::filter_info_base::sptr e3xx_radio_control_impl::get_tx_filter(
const std::string& name, const size_t chan)
{
return _ad9361->get_filter(
get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), name);
}
void e3xx_radio_control_impl::set_tx_filter(
const std::string& name, uhd::filter_info_base::sptr filter, const size_t chan)
{
_ad9361->set_filter(
get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), name, filter);
}
/**************************************************************************
* Radio Identification API Calls
*************************************************************************/
size_t e3xx_radio_control_impl::get_chan_from_dboard_fe(
const std::string& fe, const uhd::direction_t) const
{
// A and B are available here for backward compat
if (fe == "A" || fe == "0") {
return 0;
}
if (fe == "B" || fe == "1") {
return 1;
}
throw uhd::key_error(std::string("[E3xx] Invalid frontend: ") + fe);
}
std::string e3xx_radio_control_impl::get_dboard_fe_from_chan(
const size_t chan, const uhd::direction_t) const
{
if (chan == 0) {
return "0";
}
if (chan == 1) {
return "1";
}
throw uhd::lookup_error(
std::string("[E3xx] Invalid channel: ") + std::to_string(chan));
}
std::string e3xx_radio_control_impl::get_fe_name(
const size_t, const uhd::direction_t) const
{
return "E3xx";
}
|