1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "e3xx_constants.hpp"
#include "e3xx_radio_control_impl.hpp"
#include <uhd/types/sensors.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/rfnoc/reg_iface_adapter.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/split.hpp>
#include <string>
#include <vector>
using namespace uhd;
using namespace uhd::rfnoc;
void e3xx_radio_control_impl::_init_defaults()
{
RFNOC_LOG_TRACE("Initializing defaults...");
const size_t num_rx_chans = get_num_output_ports();
const size_t num_tx_chans = get_num_input_ports();
RFNOC_LOG_TRACE(
"Num TX chans: " << num_tx_chans << " Num RX chans: " << num_rx_chans);
// Note: MCR gets set during the init() call (prior to this), which takes
// in arguments from the device args. So if block_args contains a
// master_clock_rate key, then it should better be whatever the device is
// configured to do.
auto block_args = get_block_args();
_master_clock_rate =
_rpcc->request_with_token<double>(_rpc_prefix + "get_master_clock_rate");
const double block_args_mcr =
block_args.cast<double>("master_clock_rate", _master_clock_rate);
if (block_args_mcr != _master_clock_rate) {
throw uhd::runtime_error(
str(boost::format("Master clock rate mismatch. Device returns %f MHz, "
"but should have been %f MHz.")
% (_master_clock_rate / 1e6) % (block_args_mcr / 1e6)));
}
RFNOC_LOG_DEBUG("Master Clock Rate is: " << (_master_clock_rate / 1e6) << " MHz.");
set_tick_rate(_master_clock_rate);
_e3xx_timekeeper->update_tick_rate(_master_clock_rate);
radio_control_impl::set_rate(_master_clock_rate);
for (size_t chan = 0; chan < num_rx_chans; chan++) {
radio_control_impl::set_rx_frequency(E3XX_DEFAULT_FREQ, chan);
radio_control_impl::set_rx_gain(E3XX_DEFAULT_GAIN, chan);
radio_control_impl::set_rx_antenna(E3XX_DEFAULT_RX_ANTENNA, chan);
radio_control_impl::set_rx_bandwidth(E3XX_DEFAULT_BANDWIDTH, chan);
}
for (size_t chan = 0; chan < num_tx_chans; chan++) {
radio_control_impl::set_tx_frequency(E3XX_DEFAULT_FREQ, chan);
radio_control_impl::set_tx_gain(E3XX_DEFAULT_GAIN, chan);
radio_control_impl::set_tx_antenna(E3XX_DEFAULT_TX_ANTENNA, chan);
radio_control_impl::set_tx_bandwidth(E3XX_DEFAULT_BANDWIDTH, chan);
}
_rx_sensor_names = _rpcc->request_with_token<std::vector<std::string>>(
this->_rpc_prefix + "get_sensors", "RX");
_tx_sensor_names = _rpcc->request_with_token<std::vector<std::string>>(
this->_rpc_prefix + "get_sensors", "TX");
// Cache the filter names
// FIXME: Uncomment this
//_rx_filter_names = _ad9361->get_filter_names(
// get_which_ad9361_chain(RX_DIRECTION, 0, _fe_swap));
//_tx_filter_names = _ad9361->get_filter_names(
// get_which_ad9361_chain(TX_DIRECTION, 0, _fe_swap));
}
void e3xx_radio_control_impl::_init_peripherals()
{
RFNOC_LOG_TRACE("Initializing peripherals...");
for (size_t radio_idx = 0; radio_idx < E3XX_NUM_CHANS; radio_idx++) {
_wb_ifaces.push_back(RFNOC_MAKE_WB_IFACE(0, radio_idx));
}
_db_gpio.clear(); // Following the as-if rule, this can get optimized out
for (size_t radio_idx = 0; radio_idx < E3XX_NUM_CHANS; radio_idx++) {
RFNOC_LOG_TRACE("Initializing DB GPIOs for channel " << radio_idx);
// Note: The register offset is baked into the different _wb_iface
// objects!
_db_gpio.emplace_back(
usrp::gpio_atr::gpio_atr_3000::make(_wb_ifaces.at(radio_idx),
usrp::gpio_atr::gpio_atr_offsets::make_write_only(
e3xx_regs::SR_DB_GPIO + (radio_idx * e3xx_regs::PERIPH_REG_CHAN_OFFSET),
e3xx_regs::PERIPH_REG_OFFSET)));
_db_gpio[radio_idx]->set_atr_mode(
usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
}
_leds_gpio.clear(); // Following the as-if rule, this can get optimized out
for (size_t radio_idx = 0; radio_idx < E3XX_NUM_CHANS; radio_idx++) {
RFNOC_LOG_TRACE("Initializing LED GPIOs for channel " << radio_idx);
_leds_gpio.emplace_back(
usrp::gpio_atr::gpio_atr_3000::make(_wb_ifaces.at(radio_idx),
usrp::gpio_atr::gpio_atr_offsets::make_write_only(
e3xx_regs::SR_LEDS + (radio_idx * e3xx_regs::PERIPH_REG_CHAN_OFFSET),
e3xx_regs::PERIPH_REG_OFFSET)));
_leds_gpio[radio_idx]->set_atr_mode(
usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
}
RFNOC_LOG_TRACE("Initializing front-panel GPIO control...")
_fp_gpio = usrp::gpio_atr::gpio_atr_3000::make(_wb_ifaces.at(0),
usrp::gpio_atr::gpio_atr_offsets::make_default(
e3xx_regs::SR_FP_GPIO,
e3xx_regs::RB_FP_GPIO,
e3xx_regs::PERIPH_REG_OFFSET));
auto block_args = get_block_args();
if (block_args.has_key("identify")) {
const std::string identify_val = block_args.get("identify");
int identify_duration = std::atoi(identify_val.c_str());
if (identify_duration == 0) {
identify_duration = 5;
}
_identify_with_leds(identify_duration);
}
}
void e3xx_radio_control_impl::_init_frontend_subtree(
uhd::property_tree::sptr subtree, const size_t chan_idx)
{
const fs_path tx_fe_path = fs_path("tx_frontends") / chan_idx;
const fs_path rx_fe_path = fs_path("rx_frontends") / chan_idx;
RFNOC_LOG_TRACE("Adding non-RFNoC block properties for channel "
<< chan_idx << " to prop tree path " << tx_fe_path << " and "
<< rx_fe_path);
// TX Standard attributes
subtree->create<std::string>(tx_fe_path / "name").set("E3xx");
subtree->create<std::string>(tx_fe_path / "connection").set("IQ");
// RX Standard attributes
subtree->create<std::string>(rx_fe_path / "name").set("E3xx");
subtree->create<std::string>(rx_fe_path / "connection").set("IQ");
// TX Antenna
subtree->create<std::string>(tx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string& ant) {
this->set_tx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_antenna(chan_idx); });
subtree->create<std::vector<std::string>>(tx_fe_path / "antenna" / "options")
.set({E3XX_DEFAULT_TX_ANTENNA})
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
// RX Antenna
subtree->create<std::string>(rx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string& ant) {
this->set_rx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_antenna(chan_idx); });
subtree->create<std::vector<std::string>>(rx_fe_path / "antenna" / "options")
.set(E3XX_RX_ANTENNAS)
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
// TX frequency
subtree->create<double>(tx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq) {
return this->set_tx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_frequency(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "freq" / "range")
.set_publisher([this]() { return get_tx_frequency_range(0); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
// RX frequency
subtree->create<double>(rx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq) {
return this->set_rx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_frequency(chan_idx); });
subtree->create<meta_range_t>(rx_fe_path / "freq" / "range")
.set_publisher([this]() { return get_rx_frequency_range(0); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
// TX bandwidth
subtree->create<double>(tx_fe_path / "bandwidth" / "value")
.set_publisher([this, chan_idx]() { return get_tx_bandwidth(chan_idx); })
.set_coercer([this, chan_idx](const double bw) {
return this->set_tx_bandwidth(bw, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_bandwidth(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "bandwidth" / "range")
.set_publisher([this]() { return get_tx_bandwidth_range(0); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update bandwidth range!");
});
// RX bandwidth
subtree->create<double>(rx_fe_path / "bandwidth" / "value")
.set_publisher([this, chan_idx]() { return get_rx_bandwidth(chan_idx); })
.set_coercer([this, chan_idx](const double bw) {
return this->set_rx_bandwidth(bw, chan_idx);
});
subtree->create<meta_range_t>(rx_fe_path / "bandwidth" / "range")
.set_publisher([this]() { return get_rx_bandwidth_range(0); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update bandwidth range!");
});
// TX gains
const std::vector<std::string> tx_gain_names = ad9361_ctrl::get_gain_names("TX1");
for (auto tx_gain_name : tx_gain_names) {
subtree->create<double>(tx_fe_path / "gains" / tx_gain_name / "value")
.set_coercer([this, chan_idx](const double gain) {
return this->set_tx_gain(gain, chan_idx);
})
.set_publisher(
[this, chan_idx]() { return radio_control_impl::get_tx_gain(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "gains" / tx_gain_name / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([]() {
return meta_range_t(
AD9361_MIN_TX_GAIN, AD9361_MAX_TX_GAIN, AD9361_TX_GAIN_STEP);
});
}
// RX gains
const std::vector<std::string> rx_gain_names = ad9361_ctrl::get_gain_names("RX1");
for (auto rx_gain_name : rx_gain_names) {
subtree->create<double>(rx_fe_path / "gains" / rx_gain_name / "value")
.set_coercer([this, chan_idx](const double gain) {
return this->set_rx_gain(gain, chan_idx);
})
.set_publisher(
[this, chan_idx]() { return radio_control_impl::get_rx_gain(chan_idx); });
subtree->create<meta_range_t>(rx_fe_path / "gains" / rx_gain_name / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([]() {
return meta_range_t(
AD9361_MIN_RX_GAIN, AD9361_MAX_RX_GAIN, AD9361_RX_GAIN_STEP);
});
}
auto rx_sensor_names = get_rx_sensor_names(chan_idx);
for (const auto& rx_sensor_name : rx_sensor_names) {
RFNOC_LOG_TRACE("Adding RX sensor " << rx_sensor_name);
get_tree()
->create<sensor_value_t>(rx_fe_path / "sensors" / rx_sensor_name)
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, rx_sensor_name, chan_idx]() {
return get_rx_sensor(rx_sensor_name, chan_idx);
});
}
auto tx_sensor_names = get_tx_sensor_names(chan_idx);
for (const auto& tx_sensor_name : tx_sensor_names) {
RFNOC_LOG_TRACE("Adding TX sensor " << tx_sensor_name);
get_tree()
->create<sensor_value_t>(tx_fe_path / "sensors" / tx_sensor_name)
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, tx_sensor_name, chan_idx]() {
return get_tx_sensor(tx_sensor_name, chan_idx);
});
}
}
void e3xx_radio_control_impl::_init_prop_tree()
{
for (size_t chan_idx = 0; chan_idx < E3XX_NUM_CHANS; chan_idx++) {
this->_init_frontend_subtree(get_tree()->subtree(DB_PATH), chan_idx);
}
get_tree()->create<std::string>("rx_codec/name").set("AD9361 Dual ADC");
get_tree()->create<std::string>("tx_codec/name").set("AD9361 Dual DAC");
}
void e3xx_radio_control_impl::_init_mpm()
{
// Initialize catalina
_init_codec();
// Loopback test
for (size_t chan = 0; chan < E3XX_NUM_CHANS; chan++) {
loopback_self_test(chan);
}
}
void e3xx_radio_control_impl::_init_codec()
{
RFNOC_LOG_TRACE("Setting Catalina Defaults... ");
for (size_t chan = 0; chan < E3XX_NUM_CHANS; chan++) {
std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
this->set_rx_gain(E3XX_DEFAULT_GAIN, chan);
this->set_rx_frequency(E3XX_DEFAULT_FREQ, chan);
this->set_rx_antenna(E3XX_DEFAULT_RX_ANTENNA, chan);
this->set_rx_bandwidth(E3XX_DEFAULT_BANDWIDTH, chan);
_ad9361->set_dc_offset_auto(rx_fe, E3XX_DEFAULT_AUTO_DC_OFFSET);
_ad9361->set_iq_balance_auto(rx_fe, E3XX_DEFAULT_AUTO_IQ_BALANCE);
_ad9361->set_agc(rx_fe, E3XX_DEFAULT_AGC_ENABLE);
std::string tx_fe = get_which_ad9361_chain(TX_DIRECTION, chan);
this->set_tx_gain(E3XX_DEFAULT_GAIN, chan);
this->set_tx_frequency(E3XX_DEFAULT_FREQ, chan);
this->set_tx_bandwidth(E3XX_DEFAULT_BANDWIDTH, chan);
}
}
|