1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
//
// Copyright 2020 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/types/direction.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhdlib/usrp/dboard/zbx/zbx_dboard.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <cstdlib>
#include <sstream>
namespace uhd { namespace usrp { namespace zbx {
/******************************************************************************
* Structors
*****************************************************************************/
zbx_dboard_impl::zbx_dboard_impl(register_iface& reg_iface,
const size_t reg_base_address,
time_accessor_fn_type&& time_accessor,
const size_t db_idx,
const std::string& radio_slot,
const std::string& rpc_prefix,
const std::string& unique_id,
uhd::usrp::x400_rpc_iface::sptr mb_rpcc,
uhd::usrp::zbx_rpc_iface::sptr rpcc,
uhd::rfnoc::x400::rfdc_control::sptr rfdcc,
uhd::property_tree::sptr tree)
: nameless_gain_mixin([this](const uhd::direction_t trx, size_t chan) {
const auto gain_profile = trx == TX_DIRECTION ?
_tx_gain_profile_api->get_gain_profile(chan) :
_rx_gain_profile_api->get_gain_profile(chan);
if (gain_profile == ZBX_GAIN_PROFILE_MANUAL) {
const std::string err_msg = "When using 'manual' gain mode, a gain name is required!";
RFNOC_LOG_ERROR(err_msg);
throw uhd::runtime_error(err_msg);
}
if (gain_profile == ZBX_GAIN_PROFILE_CPLD
|| gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) {
return ZBX_GAIN_STAGE_TABLE;
}
return ZBX_GAIN_STAGE_ALL;
})
, _unique_id(unique_id)
, _regs(reg_iface)
, _reg_base_address(reg_base_address)
, _time_accessor(time_accessor)
, _radio_slot(radio_slot)
, _db_idx(db_idx)
, _rpc_prefix(rpc_prefix)
, _mb_rpcc(mb_rpcc)
, _rpcc(rpcc)
, _rfdcc(rfdcc)
, _tree(tree)
, _rfdc_rate(_rpcc->get_dboard_sample_rate())
, _prc_rate(_rpcc->get_dboard_prc_rate())
{
RFNOC_LOG_TRACE("Entering zbx_dboard_impl ctor...");
RFNOC_LOG_TRACE("Radio slot: " << _radio_slot);
_rx_antenna = std::make_shared<uhd::rfnoc::rf_control::enumerated_antenna>(tree,
[this](size_t chan) {
return this->_get_frontend_path(RX_DIRECTION, chan) / "antenna" / "value";
},
RX_ANTENNAS, RX_ANTENNA_NAME_COMPAT_MAP);
_tx_antenna = std::make_shared<uhd::rfnoc::rf_control::enumerated_antenna>(tree,
[this](size_t chan) {
return this->_get_frontend_path(TX_DIRECTION, chan) / "antenna" / "value";
},
TX_ANTENNAS, TX_ANTENNA_NAME_COMPAT_MAP);
_tx_gain_profile_api = std::make_shared<rf_control::enumerated_gain_profile>(
ZBX_GAIN_PROFILES, ZBX_GAIN_PROFILE_DEFAULT, ZBX_NUM_CHANS);
_rx_gain_profile_api = std::make_shared<rf_control::enumerated_gain_profile>(
ZBX_GAIN_PROFILES, ZBX_GAIN_PROFILE_DEFAULT, ZBX_NUM_CHANS);
_expert_container =
uhd::experts::expert_factory::create_container("zbx_radio_" + _radio_slot);
_init_cpld();
_init_peripherals();
// Prop tree requires the initialization of certain peripherals
_init_prop_tree();
_expert_container->resolve_all();
}
zbx_dboard_impl::~zbx_dboard_impl()
{
RFNOC_LOG_TRACE("zbx_dboard::dtor() ");
}
void zbx_dboard_impl::deinit()
{
_wb_ifaces.clear();
}
void zbx_dboard_impl::set_command_time(uhd::time_spec_t time, const size_t chan)
{
// When the command time gets updated, import it into the expert graph
get_tree()
->access<time_spec_t>(fs_path("dboard") / "rx_frontends" / chan / "time/cmd")
.set(time);
}
std::string zbx_dboard_impl::get_unique_id() const
{
return _unique_id;
}
/******************************************************************************
* API Calls
*****************************************************************************/
double zbx_dboard_impl::set_tx_frequency(const double req_freq, const size_t chan)
{
const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan);
_tree->access<double>(fe_path / "freq").set(req_freq);
// Our power manager sets a new gain value via the API, based on its new calculations.
// Since the expert nodes are protected by a mutex, it will hang if we try to call
// update_power() from inside the expert resolve methods (resolve() -> update_power()
// -> set_tx_gain -> resolve())
_tx_pwr_mgr.at(chan)->update_power();
return _tree->access<double>(fe_path / "freq").get();
}
double zbx_dboard_impl::set_rx_frequency(const double req_freq, const size_t chan)
{
const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan);
_tree->access<double>(fe_path / "freq").set(req_freq);
// Our power manager sets a new gain value via the API, based on its new calculations.
// Since the expert nodes are protected by a mutex, it will hang if we try to call
// update_power() from inside the expert resolve methods (resolve() -> update_power()
// -> set_rx_gain -> resolve())
_rx_pwr_mgr.at(chan)->update_power();
return _tree->access<double>(fe_path / "freq").get();
}
double zbx_dboard_impl::set_tx_bandwidth(const double bandwidth, const size_t chan)
{
const double bw = get_tx_bandwidth(chan);
if (!uhd::math::frequencies_are_equal(bandwidth, bw)) {
RFNOC_LOG_WARNING("Invalid analog bandwidth: " << (bandwidth / 1e6) << " MHz.");
}
return bw;
}
double zbx_dboard_impl::get_tx_bandwidth(size_t chan)
{
return _tree
->access<double>(_get_frontend_path(TX_DIRECTION, chan) / "bandwidth/value")
.get();
}
double zbx_dboard_impl::set_rx_bandwidth(const double bandwidth, const size_t chan)
{
const double bw = get_rx_bandwidth(chan);
if (!uhd::math::frequencies_are_equal(bandwidth, bw)) {
RFNOC_LOG_WARNING("Invalid analog bandwidth: " << (bandwidth / 1e6) << " MHz.");
}
return bw;
}
double zbx_dboard_impl::get_rx_bandwidth(size_t chan)
{
return _tree
->access<double>(_get_frontend_path(RX_DIRECTION, chan) / "bandwidth/value")
.get();
}
double zbx_dboard_impl::set_tx_gain(
const double gain, const std::string& name_, const size_t chan)
{
// We have to accept the empty string for "all", because that's widely used
// (e.g. by multi_usrp)
const std::string name = name_.empty() ? ZBX_GAIN_STAGE_ALL : name_;
const fs_path gains_path = _get_frontend_path(TX_DIRECTION, chan) / "gains";
const auto gain_profile = _tx_gain_profile_api->get_gain_profile(chan);
// Default gain profile: Setting anything other than 'all' is forbidden
if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT && name != ZBX_GAIN_STAGE_ALL) {
throw uhd::key_error("Invalid gain name for gain profile 'default': " + name);
}
// Also, when the gain name is all, we have to be in default mode.
if (gain_profile != ZBX_GAIN_PROFILE_DEFAULT && name == ZBX_GAIN_STAGE_ALL) {
throw uhd::key_error(
"Setting overall gain is only valid in gain profile 'default'!");
}
// The combination of the no-ATR profile, and any gain name other than 'table'
// is not valid.
if (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR && name != ZBX_GAIN_STAGE_TABLE) {
throw uhd::key_error("set_tx_gain(): Invalid combination of gain profile "
+ gain_profile + " and gain name " + name);
}
// First, we handle the 'table' gain name. It's handled a bit differently
// than the rest.
if (name == ZBX_GAIN_STAGE_TABLE) {
static const uhd::meta_range_t table_range(0, 255, 1);
const uint8_t table_idx = uhd::narrow<uint8_t>(table_range.clip(gain, true));
if (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) {
_cpld->set_sw_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA, table_idx);
return static_cast<double>(table_idx);
}
if (gain_profile == ZBX_GAIN_PROFILE_MANUAL
|| gain_profile == ZBX_GAIN_PROFILE_CPLD) {
_cpld->set_tx_gain_switches(chan, ATR_ADDR_TX, table_idx);
_cpld->set_tx_gain_switches(chan, ATR_ADDR_XX, table_idx);
return static_cast<double>(table_idx);
}
// That covers all the gain profiles for gain name 'table'.
UHD_THROW_INVALID_CODE_PATH();
}
// Sanity check key. Note we do this after the previous gain stage, because
// it's not a property node.
if (!_tree->exists(gains_path / name)) {
throw uhd::key_error("Invalid TX gain stage: " + name);
}
// This leaves directly setting either the DSAs or the amplifier. This is
// possible in both the manual and CPLD gain profiles.
return _tree->access<double>(gains_path / name / "value").set(gain).get();
}
double zbx_dboard_impl::set_rx_gain(
const double gain, const std::string& name_, const size_t chan)
{
// We have to accept the empty string for "all", because that's widely used
// (e.g. by multi_usrp).
const std::string name = name_.empty() ? ZBX_GAIN_STAGE_ALL : name_;
const fs_path gains_path = _get_frontend_path(RX_DIRECTION, chan) / "gains";
const auto gain_profile = _rx_gain_profile_api->get_gain_profile(chan);
// Default gain profile: Setting anything other than ZBX_GAIN_STAGE_ALL is forbidden
if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT && name != ZBX_GAIN_STAGE_ALL) {
throw uhd::key_error("Invalid gain name for gain profile 'default': " + name);
}
// Also, when the gain name is all, we have to be in default mode.
if (gain_profile != ZBX_GAIN_PROFILE_DEFAULT && name == ZBX_GAIN_STAGE_ALL) {
throw uhd::key_error(
"Setting overall gain is only valid in gain profile 'default'!");
}
// The combination of the no-ATR profile, and any gain name other than 'table'
// is not valid.
if (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR && name != ZBX_GAIN_STAGE_TABLE) {
throw uhd::key_error("set_rx_gain(): Invalid combination of gain profile "
+ gain_profile + " and gain name " + name);
}
// First, we handle the 'table' gain name. It's a bit different from the
// rest.
if (name == ZBX_GAIN_STAGE_TABLE) {
static const uhd::meta_range_t table_range(0, 255, 1);
const uint8_t table_idx = uhd::narrow<uint8_t>(table_range.clip(gain, true));
if (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) {
_cpld->set_sw_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA, table_idx);
return static_cast<double>(table_idx);
}
if (gain_profile == ZBX_GAIN_PROFILE_MANUAL
|| gain_profile == ZBX_GAIN_PROFILE_CPLD) {
_cpld->set_rx_gain_switches(chan, ATR_ADDR_RX, table_idx);
_cpld->set_rx_gain_switches(chan, ATR_ADDR_XX, table_idx);
return static_cast<double>(table_idx);
}
// That covers all the gain profiles for gain name 'table'.
UHD_THROW_INVALID_CODE_PATH();
}
// Sanity check key. Note we do this after the previous gain stage, because
// it's not a property node.
if (!_tree->exists(gains_path / name / "value")) {
throw uhd::key_error("Invalid RX gain stage: " + name);
}
return _tree->access<double>(gains_path / name / "value").set(gain).get();
}
double zbx_dboard_impl::get_tx_gain(const std::string& name_, const size_t chan)
{
// We have to accept the empty string for "all", because that's widely used
// (e.g. by multi_usrp)
const std::string name = name_.empty() ? ZBX_GAIN_STAGE_ALL : name_;
const fs_path gains_path = _get_frontend_path(TX_DIRECTION, chan) / "gains";
const auto gain_profile = _tx_gain_profile_api->get_gain_profile(chan);
// Overall gain: Only reliable in 'default' mode. We warn, not throw, in
// the other modes. That's because reading back the overall gain is common
// diagnostic for many existing applications.
if (name == ZBX_GAIN_STAGE_ALL && gain_profile != ZBX_GAIN_PROFILE_DEFAULT) {
RFNOC_LOG_WARNING("get_tx_gain(): Trying to read back overall gain in "
"non-default gain profile is undefined.");
}
// Table gain: Returns the current DSA table index.
if (name == ZBX_GAIN_STAGE_TABLE) {
return static_cast<double>(
_cpld->get_current_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA));
}
// Otherwise: DSA or amp. Sanity check key is valid. Because the table gain
// is not a property tree node, this check comes after the previous if-clause.
if (!_tree->exists(gains_path / name / "value")) {
RFNOC_LOG_ERROR("get_tx_gain(): Invalid gain name `" << name << "'");
throw uhd::key_error(std::string("get_tx_gain(): Invalid gain name: ") + name);
}
// We're not yet done: If we're in CPLD/table profiles, we peek the current
// DSA settings and apply them to the local cache.
// Note: This means we have a different behaviour between directly accessing
// the prop tree, or accessing the C++ API.
if ((name == ZBX_GAIN_STAGE_DSA1 || name == ZBX_GAIN_STAGE_DSA2)
&& (gain_profile == ZBX_GAIN_PROFILE_CPLD
|| gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR)) {
const uint8_t idx =
(gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR)
? _cpld->get_current_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA)
: ATR_ADDR_TX;
constexpr bool update_cache = true; // Make sure to peek the actual value
const auto dsa = (name == ZBX_GAIN_STAGE_DSA1) ? zbx_cpld_ctrl::dsa_type::DSA1
: zbx_cpld_ctrl::dsa_type::DSA2;
const uint8_t dsa_val = _cpld->get_tx_dsa(chan, idx, dsa, update_cache);
// Update the tree because we're good citizens, and if we switch the
// gain profile from 'table' to 'manual', we want everything to be
// consistent. This will not cause a poke to the CPLD, b/c the experts
// won't write gains in this gain profile.
// Note that the other DSA values in the tree are not updated automatically,
// which is why we can't write DSA values to the CPLD in this mode. If
// we want to allow writing DSA values in this mode, we need to update
// everything here, or put some more cleverness into the programming
// expert.
_tree->access<double>(gains_path / name / "value")
.set(ZBX_TX_DSA_MAX_ATT - dsa_val);
}
// Now return the value from the tree
return _tree->access<double>(gains_path / name / "value").get();
}
double zbx_dboard_impl::get_rx_gain(const std::string& name_, const size_t chan)
{
// We have to accept the empty string for "all", because that's widely used
// (e.g. by multi_usrp)
const std::string name = name_.empty() ? ZBX_GAIN_STAGE_ALL : name_;
const fs_path gains_path = _get_frontend_path(RX_DIRECTION, chan) / "gains";
const auto gain_profile = _rx_gain_profile_api->get_gain_profile(chan);
// Overall gain: Only reliable in 'default' mode. We warn, not throw, in
// the other modes. That's because reading back the overall gain is common
// diagnostic for many existing applications.
if (name == ZBX_GAIN_STAGE_ALL && gain_profile != ZBX_GAIN_PROFILE_DEFAULT) {
RFNOC_LOG_WARNING("get_rx_gain(): Trying to read back overall gain in "
"non-default gain profile is undefined.");
}
// Table gain: Returns the current DSA table index.
if (name == ZBX_GAIN_STAGE_TABLE) {
return static_cast<double>(
_cpld->get_current_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA));
}
// Otherwise: DSA. Sanity check key is valid. Because the table gain is not
// a property tree node, this check comes after the previous if-clause.
if (!_tree->exists(gains_path / name / "value")) {
RFNOC_LOG_ERROR("get_rx_gain(): Invalid gain name `" << name << "'");
throw uhd::key_error(std::string("get_rx_gain(): Invalid gain name: ") + name);
}
// We're not yet done: If we're in CPLD/table profiles, we peek the current
// DSA settings and apply them to the local cache.
// Note: This means we have a different behaviour between directly accessing
// the prop tree, or accessing the C++ API.
if (gain_profile == ZBX_GAIN_PROFILE_CPLD
|| gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) {
const uint8_t idx =
(gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR)
? _cpld->get_current_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA)
: ATR_ADDR_RX;
constexpr bool update_cache = true; // Make sure to peek the actual value
static const std::map<std::string, zbx_cpld_ctrl::dsa_type> dsa_map{
{ZBX_GAIN_STAGE_DSA1, zbx_cpld_ctrl::dsa_type::DSA1},
{ZBX_GAIN_STAGE_DSA2, zbx_cpld_ctrl::dsa_type::DSA2},
{ZBX_GAIN_STAGE_DSA3A, zbx_cpld_ctrl::dsa_type::DSA3A},
{ZBX_GAIN_STAGE_DSA3B, zbx_cpld_ctrl::dsa_type::DSA3B},
};
const auto dsa = dsa_map.at(name);
const uint8_t dsa_val = _cpld->get_rx_dsa(chan, idx, dsa, update_cache);
// Update the tree because we're good citizens, and if we switch the
// gain profile from 'table' to 'manual', we want everything to be
// consistent. This will not cause a poke to the CPLD, b/c the experts
// won't write gains in this gain profile.
// Note that the other DSA values in the tree are not updated automatically,
// which is why we can't write DSA values to the CPLD in this profile. If
// we want to allow writing DSA values in this profile, we need to update
// everything here, or put some more cleverness into the programming
// expert.
_tree->access<double>(gains_path / name / "value")
.set(static_cast<double>(ZBX_RX_DSA_MAX_ATT - dsa_val));
}
return _tree->access<double>(gains_path / name / "value").get();
}
std::vector<std::string> zbx_dboard_impl::get_tx_gain_names(const size_t chan) const
{
UHD_ASSERT_THROW(chan < ZBX_NUM_CHANS);
const std::string gain_profile = _tx_gain_profile_api->get_gain_profile(chan);
if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT) {
return {ZBX_GAIN_STAGE_ALL};
}
if (gain_profile == ZBX_GAIN_PROFILE_CPLD
|| gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) {
return {ZBX_GAIN_STAGE_TABLE};
}
return ZBX_TX_GAIN_STAGES;
}
std::vector<std::string> zbx_dboard_impl::get_rx_gain_names(const size_t chan) const
{
UHD_ASSERT_THROW(chan < ZBX_NUM_CHANS);
const std::string gain_profile = _rx_gain_profile_api->get_gain_profile(chan);
if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT) {
return {ZBX_GAIN_STAGE_ALL};
}
if (gain_profile == ZBX_GAIN_PROFILE_CPLD
|| gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) {
return {ZBX_GAIN_STAGE_TABLE};
}
return ZBX_RX_GAIN_STAGES;
}
const std::string zbx_dboard_impl::get_tx_lo_source(
const std::string& name, const size_t chan)
{
const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan);
if (!_tree->exists(fe_path / "ch" / name)) {
throw uhd::value_error("get_tx_lo_source(): Invalid LO name: " + name);
}
const zbx_lo_source_t lo_source =
_tree->access<zbx_lo_source_t>(fe_path / "ch" / name / "source").get();
return lo_source == zbx_lo_source_t::internal ? "internal" : "external";
}
const std::string zbx_dboard_impl::get_rx_lo_source(
const std::string& name, const size_t chan)
{
const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan);
if (!_tree->exists(fe_path / "ch" / name)) {
throw uhd::value_error("get_rx_lo_source(): Invalid LO name: " + name);
}
const zbx_lo_source_t lo_source =
_tree->access<zbx_lo_source_t>(fe_path / "ch" / name / "source").get();
return lo_source == zbx_lo_source_t::internal ? "internal" : "external";
}
void zbx_dboard_impl::set_rx_lo_source(
const std::string& src, const std::string& name, const size_t chan)
{
RFNOC_LOG_TRACE("set_rx_lo_source(name=" << name << ", src=" << src << ")");
const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan);
if (!_tree->exists(fe_path / "ch" / name)) {
throw uhd::value_error("set_rx_lo_source(): Invalid LO name: " + name);
}
_tree->access<zbx_lo_source_t>(fe_path / "ch" / name / "source")
.set(src == "internal" ? zbx_lo_source_t::internal : zbx_lo_source_t::external);
}
void zbx_dboard_impl::set_tx_lo_source(
const std::string& src, const std::string& name, const size_t chan)
{
RFNOC_LOG_TRACE("set_tx_lo_source(name=" << name << ", src=" << src << ")");
const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan);
if (!_tree->exists(fe_path / "ch" / name)) {
throw uhd::value_error("set_tx_lo_source(): Invalid LO name: " + name);
}
_tree->access<zbx_lo_source_t>(fe_path / "ch" / name / "source")
.set(src == "internal" ? zbx_lo_source_t::internal : zbx_lo_source_t::external);
}
double zbx_dboard_impl::set_tx_lo_freq(
double freq, const std::string& name, const size_t chan)
{
RFNOC_LOG_TRACE("set_tx_lo_freq(freq=" << freq << ", name=" << name << ")");
const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan);
assert_has(ZBX_LOS, name);
return _tree->access<double>(fe_path / "los" / name / "freq" / "value").set(freq).get();
}
double zbx_dboard_impl::get_tx_lo_freq(const std::string& name, const size_t chan)
{
RFNOC_LOG_TRACE("get_tx_lo_freq(name=" << name << ")");
const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan);
assert_has(ZBX_LOS, name);
return _tree->access<double>(fe_path / "los" / name / "freq" / "value").get();
}
freq_range_t zbx_dboard_impl::_get_lo_freq_range(
const std::string& name, const size_t /*chan*/) const
{
if (name == ZBX_LO1 || name == ZBX_LO2) {
// Note this doesn't include the LO step size. The LO step size is only
// used when the LO frequencies are automatically calculated (which is
// the normal use case). When setting LO frequencies manually, it is
// possible to set LOs to values outside of the step size.
return freq_range_t{LMX2572_MIN_FREQ, LMX2572_MAX_FREQ};
}
if (name == RFDC_NCO) {
// It might make sense to constrain the possible NCO values more, since
// the bandpass filters for IF2 only allow a certain range. Note that LO1
// and LO2 freq ranges are also constrained by their analog filters.
// But in principle, this is the range for the NCO... so why not.
return freq_range_t{0.0, _rfdc_rate};
}
throw uhd::value_error("Invalid LO name: " + name);
}
double zbx_dboard_impl::set_rx_lo_freq(
double freq, const std::string& name, const size_t chan)
{
RFNOC_LOG_TRACE("set_rx_lo_freq(freq=" << freq << ", name=" << name << ")");
const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan);
assert_has(ZBX_LOS, name);
return _tree->access<double>(fe_path / "los" / name / "freq" / "value")
.set(freq)
.get();
}
double zbx_dboard_impl::get_rx_lo_freq(const std::string& name, size_t chan)
{
RFNOC_LOG_TRACE("get_rx_lo_freq(name=" << name << ")");
const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan);
assert_has(ZBX_LOS, name);
return _tree->access<double>(fe_path / "los" / name / "freq" / "value").get();
}
double zbx_dboard_impl::get_tx_frequency(size_t chan)
{
const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan);
return _tree->access<double>(fe_path / "freq").get();
}
double zbx_dboard_impl::get_rx_frequency(size_t chan)
{
const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan);
return _tree->access<double>(fe_path / "freq").get();
}
void zbx_dboard_impl::set_tx_tune_args(const uhd::device_addr_t&, const size_t)
{
RFNOC_LOG_TRACE("tune_args not supported by this radio.");
}
void zbx_dboard_impl::set_rx_tune_args(const uhd::device_addr_t&, const size_t)
{
RFNOC_LOG_TRACE("tune_args not supported by this radio.");
}
void zbx_dboard_impl::set_rx_agc(const bool, const size_t)
{
throw uhd::not_implemented_error("set_rx_agc() is not supported on this radio!");
}
uhd::gain_range_t zbx_dboard_impl::get_tx_gain_range(
const std::string& name, const size_t) const
{
// We have to accept the empty string for "all", because that's widely used
// (e.g. by multi_usrp)
if (!name.empty() && name != ZBX_GAIN_STAGE_ALL) {
throw uhd::value_error(
std::string("get_tx_gain_range(): Unknown gain name '") + name + "'!");
}
return ZBX_TX_GAIN_RANGE;
}
uhd::gain_range_t zbx_dboard_impl::get_rx_gain_range(
const std::string& name, const size_t) const
{
// We have to accept the empty string for "all", because that's widely used
// (e.g. by multi_usrp)
if (!name.empty() && name != ZBX_GAIN_STAGE_ALL) {
throw uhd::value_error(
std::string("get_rx_gain_range(): Unknown gain name '") + name + "'!");
}
// FIXME This should return a ZBX_RX_LOW_FREQ_GAIN_RANGE when freq is
// low, but this function is const
return ZBX_RX_GAIN_RANGE;
}
void zbx_dboard_impl::set_rx_lo_export_enabled(bool, const std::string&, const size_t)
{
throw uhd::not_implemented_error(
"set_rx_lo_export_enabled is not supported on this radio");
}
bool zbx_dboard_impl::get_rx_lo_export_enabled(const std::string&, const size_t)
{
return false;
}
void zbx_dboard_impl::set_tx_lo_export_enabled(bool, const std::string&, const size_t)
{
throw uhd::not_implemented_error(
"set_rx_lo_export_enabled is not supported on this radio");
}
bool zbx_dboard_impl::get_tx_lo_export_enabled(const std::string&, const size_t)
{
return false;
}
/******************************************************************************
* EEPROM API
*****************************************************************************/
eeprom_map_t zbx_dboard_impl::get_db_eeprom()
{
return _mb_rpcc->get_db_eeprom(_db_idx);
}
size_t zbx_dboard_impl::get_chan_from_dboard_fe(
const std::string& fe, const uhd::direction_t) const
{
if (fe == "0") {
return 0;
}
if (fe == "1") {
return 1;
}
throw uhd::key_error(std::string("[X400] Invalid frontend: ") + fe);
}
std::string zbx_dboard_impl::get_dboard_fe_from_chan(
const size_t chan, const uhd::direction_t) const
{
if (chan == 0) {
return "0";
}
if (chan == 1) {
return "1";
}
throw uhd::lookup_error(
std::string("[X400] Invalid channel: ") + std::to_string(chan));
}
/*********************************************************************
* Private misc/calculative helper functions
**********************************************************************/
bool zbx_dboard_impl::_get_all_los_locked(const direction_t dir, const size_t chan)
{
const fs_path fe_path = _get_frontend_path(dir, chan);
const bool is_lo1_enabled = _tree->access<bool>(fe_path / ZBX_LO1 / "enabled").get();
const bool is_lo1_locked =
_lo_ctrl_map.at(zbx_lo_ctrl::lo_string_to_enum(dir, chan, ZBX_LO1))
->get_lock_status();
// LO2 is always enabled via center frequency tuning, but users may manually disable
// it
const bool is_lo2_enabled = _tree->access<bool>(fe_path / ZBX_LO2 / "enabled").get();
const bool is_lo2_locked =
_lo_ctrl_map.at(zbx_lo_ctrl::lo_string_to_enum(dir, chan, ZBX_LO2))
->get_lock_status();
// We only care about the lock status if it's enabled (lowband center frequency)
// That means we have set it to true if is_lo[1,2]_enabled is *false*, but check for
// the lock if is_lo[1,2]_enabled is *true*
return (!is_lo1_enabled || is_lo1_locked) && (!is_lo2_enabled || is_lo2_locked);
}
fs_path zbx_dboard_impl::_get_frontend_path(
const direction_t dir, const size_t chan_idx) const
{
UHD_ASSERT_THROW(chan_idx < ZBX_NUM_CHANS);
const std::string frontend = dir == TX_DIRECTION ? "tx_frontends" : "rx_frontends";
return fs_path("dboard") / frontend / chan_idx;
}
std::vector<uhd::usrp::pwr_cal_mgr::sptr>& zbx_dboard_impl::get_pwr_mgr(
uhd::direction_t trx)
{
switch (trx) {
case uhd::RX_DIRECTION:
return _rx_pwr_mgr;
case uhd::TX_DIRECTION:
return _tx_pwr_mgr;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
}}} // namespace uhd::usrp::zbx
|