1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
//
// Copyright 2017 Ettus Research, National Instruments Company
// Copyright 2019 Ettus Research, National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "mpmd_link_if_ctrl_udp.hpp"
#include "mpmd_impl.hpp"
#include "mpmd_link_if_mgr.hpp"
#include <uhd/rfnoc/constants.hpp>
#include <uhd/transport/udp_constants.hpp>
#include <uhd/transport/udp_simple.hpp>
#include <uhd/utils/cast.hpp>
#include <uhdlib/rfnoc/rfnoc_common.hpp>
#include <uhdlib/transport/udp_boost_asio_link.hpp>
#include <uhdlib/transport/udp_common.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <string>
#ifdef HAVE_DPDK
# include <uhdlib/transport/dpdk_simple.hpp>
# include <uhdlib/transport/udp_dpdk_link.hpp>
#endif
using namespace uhd;
using namespace uhd::transport;
using namespace uhd::mpmd::xport;
namespace {
//! Maximum CHDR packet size in bytes.
// Our 10GbE connections use custom FPGA code which caps frames at 8192 bytes.
// However, we artificially limit this to a smaller frame size, which gives us
// a safety margin.
const size_t MPMD_10GE_DATA_FRAME_MAX_SIZE = 8016;
// For 1 GbE, we either go through the the SFP+ port, which supports up to 8192
// bytes, or the RJ45 port, which uses DMA to the FPGA fabric and supports even
// larger packets. However, there is a known issue where the MTU discovery can
// incorrectly detect a size that is larger than the true MTU size. The default
// MTU size for 1GbE is 1500 and that is sufficient for the highest sample rates
// supported over 1GbE, so it is capped at 1500 here.
const size_t MPMD_1GE_DATA_FRAME_MAX_SIZE = 1500;
//! Number of send/recv frames
const size_t MPMD_ETH_NUM_FRAMES = 32;
//! Buffer depth in seconds. We use the link rate to determine how large buffers
// must be to store this many seconds worth of data.
const double MPMD_BUFFER_DEPTH = 20.0e-3; // s
//! For MTU discovery, the time we wait for a packet before calling it
// oversized (seconds).
const double MPMD_MTU_DISCOVERY_TIMEOUT = 0.02;
// TODO: move these to appropriate header file for all other devices
const size_t MAX_RATE_1GIGE = 1e9 / 8; // byte/s
const size_t MAX_RATE_10GIGE = 10e9 / 8; // byte/s
mpmd_link_if_ctrl_udp::udp_link_info_map get_udp_info_from_xport_info(
const mpmd_link_if_mgr::xport_info_list_t& link_info_list)
{
mpmd_link_if_ctrl_udp::udp_link_info_map result;
for (const auto& link_info : link_info_list) {
if (!link_info.count("ipv4")) {
UHD_LOG_ERROR("MPMD::XPORT::UDP",
"Invalid response from get_chdr_link_options()! No `ipv4' key!");
throw uhd::runtime_error(
"Invalid response from get_chdr_link_options()! No `ipv4' key!");
}
if (!link_info.count("port")) {
UHD_LOG_ERROR("MPMD::XPORT::UDP",
"Invalid response from get_chdr_link_options()! No `port' key!");
throw uhd::runtime_error(
"Invalid response from get_chdr_link_options()! No `port' key!");
}
const std::string udp_port = link_info.at("port");
const size_t link_rate = link_info.count("link_rate")
? std::stoul(link_info.at("link_rate"))
: MAX_RATE_1GIGE;
const std::string link_type = link_info.at("type");
const size_t if_mtu = std::stoul(link_info.at("mtu"));
result.emplace(link_info.at("ipv4"),
mpmd_link_if_ctrl_udp::udp_link_info_t{
udp_port, link_rate, link_type, if_mtu});
}
return result;
}
std::vector<std::string> get_addrs_from_mb_args(const uhd::device_addr_t& mb_args,
const mpmd_link_if_ctrl_udp::udp_link_info_map& link_info_list)
{
std::vector<std::string> addrs;
if (!link_info_list.empty()
&& link_info_list.begin()->second.link_type == "internal") {
// If link_type is "internal" we are local. In this case
// use this address always. MPM knows better than us.
addrs.push_back(link_info_list.begin()->first);
} else {
if (mb_args.has_key(FIRST_ADDR_KEY)) {
addrs.push_back(mb_args[FIRST_ADDR_KEY]);
}
if (mb_args.has_key(SECOND_ADDR_KEY)) {
addrs.push_back(mb_args[SECOND_ADDR_KEY]);
}
if (mb_args.has_key(THIRD_ADDR_KEY)) {
addrs.push_back(mb_args[THIRD_ADDR_KEY]);
}
if (mb_args.has_key(FOURTH_ADDR_KEY)) {
addrs.push_back(mb_args[FOURTH_ADDR_KEY]);
}
}
if(addrs.empty()) {
if (!link_info_list.empty()) {
addrs.push_back(link_info_list.begin()->first);
} else {
UHD_LOG_WARNING("MPMD::XPORT::UDP",
"The `" << FIRST_ADDR_KEY
<< "' key must be specified in "
"device args to create an Ethernet transport to an RFNoC block");
return {};
}
}
// This is where in UHD we encode the knowledge about what
// get_chdr_link_options() returns to us.
for (const auto& ip_addr : addrs) {
if (link_info_list.count(ip_addr)) {
continue;
}
UHD_LOG_WARNING("MPMD::XPORT::UDP",
"Cannot create UDP link to device: The IP address `"
<< ip_addr << "' is requested, but not reachable.");
return {};
}
return addrs;
}
/*! Run a plausibility check on a detected MTU, and return a value that passes
* custom constraints.
*
* This function forcibly overrides the detected MTU value using hardcoded
* heuristics/rules, even if the detected MTU is actually correct!
* These rules should thus be chosen very carefully, and should only coerce down
* (i.e., the return value should be smaller than argument).
*/
size_t run_mtu_plausibility_check(const size_t detected_mtu)
{
// 1 GbE MTU check: We have observed that the detected path MTU for 1 GbE
// devices can come out a few bytes too high over 1 GbE. This is most likely
// due to some drivers being a little more tolerant with larger-than-MTU
// packets, which is not helpful for us. When the MTU detection errs on the
// large side, it can happen that either packets going from UHD to the
// device get fragmented (this is bad, the USRP can't defragment) or that
// packets coming from the device won't get accepted by our NIC/driver,
// causing drops (this is the rarer case). We avoid this by detecting typical
// 1 GbE MTU sizes and coercing them to 1472 bytes. When using a NIC MTU of
// 1500, we have observed detected MTUs of 1476 up to 1488 bytes, when they
// should be 1472 bytes instead.
{
constexpr size_t DEFAULT_1GBE_MTU = 1472; // bytes
constexpr size_t MIN_1GBE_MTU_COERCE_VALUE = 1472; // bytes
constexpr size_t MAX_1GBE_MTU_COERCE_VALUE = 1500; // bytes
if (detected_mtu > MIN_1GBE_MTU_COERCE_VALUE
&& detected_mtu < MAX_1GBE_MTU_COERCE_VALUE) {
UHD_LOG_DEBUG("MPMD",
"MTU discovery detected "
<< detected_mtu
<< " bytes. This may be due to a faulty MTU discovery. Coercing to "
<< DEFAULT_1GBE_MTU << " bytes.");
return DEFAULT_1GBE_MTU;
}
} // End 1 GbE MTU check.
// If no one raises any red flags, we let the detected MTU slide.
return detected_mtu;
}
/*! Do a binary search to discover MTU
*
* Uses the MPM echo service to figure out MTU. We simply send a bunch of
* packets and see if they come back until we converged on the path MTU.
* The end result must lie between \p min_frame_size and \p max_frame_size.
*
* \param address IP address
* \param port UDP port (yeah it's a string!)
* \param min_frame_size Minimum frame size, initialize algorithm to start
* with this value
* \param max_frame_size Maximum frame size, initialize algorithm to start
* with this value
* \param echo_timeout Timeout value in seconds. For frame sizes that
* exceed the MTU, we don't expect a response, and this
* is the amount of time we'll wait before we assume
* the frame size exceeds the MTU.
*/
size_t discover_mtu(const std::string& address,
const std::string& port,
size_t min_frame_size,
size_t max_frame_size,
const double echo_timeout,
const bool use_dpdk)
{
//! Function to create a udp_simple::sptr (kernel-based or DPDK-based)
using udp_simple_factory_t = std::function<uhd::transport::udp_simple::sptr(
const std::string&, const std::string&)>;
udp_simple_factory_t udp_make_broadcast = udp_simple::make_broadcast;
if (use_dpdk) {
#ifdef HAVE_DPDK
udp_make_broadcast = [](const std::string& addr, const std::string& port) {
return dpdk_simple::make_broadcast(addr, port);
};
#else
UHD_LOG_WARNING("MPMD",
"DPDK was requested but is not available, falling back to regular UDP");
#endif
}
const size_t echo_prefix_offset = uhd::mpmd::mpmd_impl::MPM_ECHO_CMD.size();
const size_t mtu_hdr_len = echo_prefix_offset + 10;
UHD_ASSERT_THROW(min_frame_size < max_frame_size);
UHD_ASSERT_THROW(min_frame_size % 4 == 0);
UHD_ASSERT_THROW(max_frame_size % 4 == 0);
UHD_ASSERT_THROW(min_frame_size >= echo_prefix_offset + mtu_hdr_len);
using namespace uhd::transport;
// The return port will probably differ from the discovery port, so we
// need a "broadcast" UDP connection; using make_connected() would
// drop packets
udp_simple::sptr udp = udp_make_broadcast(address, port);
std::string send_buf(uhd::mpmd::mpmd_impl::MPM_ECHO_CMD);
send_buf.resize(max_frame_size, '#');
UHD_ASSERT_THROW(send_buf.size() == max_frame_size);
std::vector<uint8_t> recv_buf;
recv_buf.resize(max_frame_size, ' ');
// Little helper to check returned packets match the sent ones
auto require_bufs_match = [&recv_buf, &send_buf, mtu_hdr_len](const size_t len) {
if (len < mtu_hdr_len
or std::memcmp((void*)&recv_buf[0], (void*)&send_buf[0], mtu_hdr_len) != 0) {
throw uhd::runtime_error("Unexpected content of MTU "
"discovery return packet!");
}
};
UHD_LOG_TRACE("MPMD", "Determining UDP MTU... ");
size_t seq_no = 0;
while (min_frame_size < max_frame_size) {
// Only test multiples of 4 bytes!
const size_t test_frame_size = (max_frame_size / 2 + min_frame_size / 2 + 3)
& ~size_t(3);
// Encode sequence number and current size in the string, makes it
// easy to debug in code or Wireshark. Is also used for identifying
// response packets.
std::sprintf(
&send_buf[echo_prefix_offset], ";%04lu,%04lu", seq_no++, test_frame_size);
UHD_LOG_TRACE("MPMD", "Testing frame size " << test_frame_size);
udp->send(boost::asio::buffer(&send_buf[0], test_frame_size));
const size_t len = udp->recv(boost::asio::buffer(recv_buf), echo_timeout);
if (len == 0) {
// Nothing received, so this is probably too big
max_frame_size = test_frame_size - 4;
} else if (len >= test_frame_size) {
// Size went through, so bump the minimum
require_bufs_match(len);
min_frame_size = test_frame_size;
} else if (len < test_frame_size) {
// This is an odd case. Something must have snipped the packet
// on the way back. Still, we'll just back off and try
// something smaller.
UHD_LOG_DEBUG("MPMD", "Unexpected packet truncation during MTU discovery.");
require_bufs_match(len);
max_frame_size = len;
}
}
min_frame_size = run_mtu_plausibility_check(min_frame_size);
UHD_LOG_DEBUG("MPMD", "Path MTU for address " << address << ": " << min_frame_size);
return min_frame_size;
}
} // namespace
/******************************************************************************
* Structors
*****************************************************************************/
mpmd_link_if_ctrl_udp::mpmd_link_if_ctrl_udp(const uhd::device_addr_t& mb_args,
const mpmd_link_if_mgr::xport_info_list_t& xport_info,
const uhd::rfnoc::chdr_w_t chdr_w)
: _mb_args(mb_args)
, _udp_info(get_udp_info_from_xport_info(xport_info))
, _mtu(MPMD_10GE_DATA_FRAME_MAX_SIZE)
, _pkt_factory(chdr_w, ENDIANNESS_LITTLE)
{
const bool use_dpdk =
mb_args.has_key("use_dpdk"); // FIXME use constrained_device_args
const std::string mpm_discovery_port = _mb_args.get(
mpmd_impl::MPM_DISCOVERY_PORT_KEY, std::to_string(mpmd_impl::MPM_DISCOVERY_PORT));
auto discover_mtu_for_ip = [mpm_discovery_port, use_dpdk](
const std::string& ip_addr, size_t max_frame_size) {
return discover_mtu(ip_addr,
mpm_discovery_port,
IP_PROTOCOL_MIN_MTU_SIZE - IP_PROTOCOL_UDP_PLUS_IP_HEADER,
max_frame_size,
MPMD_MTU_DISCOVERY_TIMEOUT,
use_dpdk);
};
const std::vector<std::string> requested_addrs(
get_addrs_from_mb_args(mb_args, _udp_info));
for (const auto& ip_addr : requested_addrs) {
try {
// If MTU discovery fails, we gracefully recover, but declare that
// link invalid.
auto& info = _udp_info.at(ip_addr);
if (info.link_type == "internal") {
UHD_LOG_TRACE("MPMD::XPORT::UDP",
"MTU for internal interface " << ip_addr << " is "
<< std::to_string(info.if_mtu));
_mtu = std::min(_mtu, info.if_mtu);
} else {
_mtu = std::min(_mtu, discover_mtu_for_ip(ip_addr,
info.link_rate == MAX_RATE_1GIGE ?
MPMD_1GE_DATA_FRAME_MAX_SIZE :
MPMD_10GE_DATA_FRAME_MAX_SIZE));
}
_available_addrs.push_back(ip_addr);
} catch (const uhd::exception& ex) {
UHD_LOG_WARNING("MPMD::XPORT::UDP",
"Error during MTU discovery on address " << ip_addr << ": " << ex.what());
}
}
}
/******************************************************************************
* API
*****************************************************************************/
uhd::transport::both_links_t mpmd_link_if_ctrl_udp::get_link(const size_t link_idx,
const uhd::transport::link_type_t link_type,
const uhd::device_addr_t& link_args)
{
UHD_ASSERT_THROW(link_idx < _available_addrs.size());
const std::string ip_addr = _available_addrs.at(link_idx);
const std::string udp_port = _udp_info.at(ip_addr).udp_port;
const size_t link_rate = get_link_rate(link_idx);
const bool enable_fc = not link_args.has_key("enable_fc")
|| uhd::cast::from_str<bool>(link_args.get("enable_fc"));
const bool lossy_xport = enable_fc;
const bool use_dpdk = _mb_args.has_key("use_dpdk"); // FIXME use constrained device args
link_params_t default_link_params;
default_link_params.num_send_frames = MPMD_ETH_NUM_FRAMES;
default_link_params.num_recv_frames = MPMD_ETH_NUM_FRAMES;
default_link_params.send_frame_size = (link_rate == MAX_RATE_10GIGE)
? MPMD_10GE_DATA_FRAME_MAX_SIZE
: (link_rate == MAX_RATE_1GIGE)
? MPMD_1GE_DATA_FRAME_MAX_SIZE
: get_mtu(uhd::TX_DIRECTION);
default_link_params.recv_frame_size = (link_rate == MAX_RATE_10GIGE)
? MPMD_10GE_DATA_FRAME_MAX_SIZE
: (link_rate == MAX_RATE_1GIGE)
? MPMD_1GE_DATA_FRAME_MAX_SIZE
: get_mtu(uhd::RX_DIRECTION);
default_link_params.send_buff_size = get_link_rate(link_idx) * MPMD_BUFFER_DEPTH;
default_link_params.recv_buff_size = get_link_rate(link_idx) * MPMD_BUFFER_DEPTH;
#ifdef HAVE_DPDK
if(use_dpdk) {
default_link_params.num_recv_frames = default_link_params.recv_buff_size /
default_link_params.recv_frame_size;
}
#endif
link_params_t link_params = calculate_udp_link_params(link_type,
get_mtu(uhd::TX_DIRECTION),
get_mtu(uhd::RX_DIRECTION),
default_link_params,
_mb_args,
link_args);
// Enforce a minimum bound of the number of receive and send frames.
link_params.num_send_frames =
std::max(uhd::rfnoc::MIN_NUM_FRAMES, link_params.num_send_frames);
link_params.num_recv_frames =
std::max(uhd::rfnoc::MIN_NUM_FRAMES, link_params.num_recv_frames);
if (use_dpdk) {
#ifdef HAVE_DPDK
auto link = uhd::transport::udp_dpdk_link::make(ip_addr, udp_port, link_params);
return std::make_tuple(link,
link_params.send_buff_size,
link,
link_params.recv_buff_size,
lossy_xport,
true,
enable_fc);
#else
UHD_LOG_WARNING("MPMD", "Cannot create DPDK transport, falling back to UDP");
#endif
}
auto link = uhd::transport::udp_boost_asio_link::make(ip_addr,
udp_port,
link_params,
link_params.recv_buff_size,
link_params.send_buff_size);
return std::make_tuple(link,
link_params.send_buff_size,
link,
link_params.recv_buff_size,
lossy_xport,
false,
enable_fc);
}
size_t mpmd_link_if_ctrl_udp::get_num_links() const
{
return _available_addrs.size();
}
//! Return the rate of the underlying link in bytes/sec
double mpmd_link_if_ctrl_udp::get_link_rate(const size_t link_idx) const
{
UHD_ASSERT_THROW(link_idx < get_num_links());
return _udp_info.at(_available_addrs.at(link_idx)).link_rate;
}
const uhd::rfnoc::chdr::chdr_packet_factory&
mpmd_link_if_ctrl_udp::get_packet_factory() const
{
return _pkt_factory;
}
|