1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
//
// Copyright 2010-2012,2015,2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "codec_ctrl.hpp"
#include "usrp1_iface.hpp"
#include "usrp1_impl.hpp"
#include <uhd/types/dict.hpp>
#include <uhd/usrp/dboard_iface.hpp>
#include <uhd/utils/assert_has.hpp>
#include <boost/assign/list_of.hpp>
#include <iostream>
#define FR_OE_0 5
#define FR_OE_1 6
#define FR_OE_2 7
#define FR_OE_3 8
#define FR_ATR_MASK_0 20
#define FR_ATR_TXVAL_0 21
#define FR_ATR_RXVAL_0 22
#define FR_ATR_MASK_1 23
#define FR_ATR_TXVAL_1 24
#define FR_ATR_RXVAL_1 25
#define FR_ATR_MASK_2 26
#define FR_ATR_TXVAL_2 27
#define FR_ATR_RXVAL_2 28
#define FR_ATR_MASK_3 29
#define FR_ATR_TXVAL_3 30
#define FR_ATR_RXVAL_3 31
#define FR_RX_A_REFCLK 41
#define FR_RX_B_REFCLK 43
// i/o registers for pins that go to daughterboards.
// top 16 is a mask, low 16 is value
#define FR_IO_0 9 // slot 0
#define FR_IO_1 10
#define FR_IO_2 11
#define FR_IO_3 12
#define SPI_ENABLE_TX_A 0x10 // select d'board TX A
#define SPI_ENABLE_RX_A 0x20 // select d'board RX A
#define SPI_ENABLE_TX_B 0x40 // select d'board TX B
#define SPI_ENABLE_RX_B 0x80 // select d'board RX B
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::usrp::gpio_atr;
using namespace boost::assign;
static const dboard_id_t tvrx_id(0x0040);
class usrp1_dboard_iface : public dboard_iface
{
public:
usrp1_dboard_iface(usrp1_iface::sptr iface,
usrp1_codec_ctrl::sptr codec,
usrp1_impl::dboard_slot_t dboard_slot,
const double& master_clock_rate,
const dboard_id_t& rx_dboard_id)
: _dboard_slot(dboard_slot)
, _master_clock_rate(master_clock_rate)
, _rx_dboard_id(rx_dboard_id)
{
_iface = iface;
_codec = codec;
_dbsrx_classic_div = 1;
// yes this is evil but it's necessary for TVRX to work on USRP1
if (_rx_dboard_id == tvrx_id)
_codec->bypass_adc_buffers(false);
// else _codec->bypass_adc_buffers(false); //don't think this is necessary
}
~usrp1_dboard_iface() override
{
/* NOP */
}
special_props_t get_special_props() override
{
special_props_t props;
props.soft_clock_divider = true;
props.mangle_i2c_addrs = (_dboard_slot == usrp1_impl::DBOARD_SLOT_B);
return props;
}
void write_aux_dac(unit_t, aux_dac_t, double) override;
double read_aux_adc(unit_t, aux_adc_t) override;
void set_pin_ctrl(unit_t unit, uint32_t value, uint32_t mask = 0xffffffff) override;
uint32_t get_pin_ctrl(unit_t unit) override;
void set_atr_reg(
unit_t unit, atr_reg_t reg, uint32_t value, uint32_t mask = 0xffffffff) override;
uint32_t get_atr_reg(unit_t unit, atr_reg_t reg) override;
void set_gpio_ddr(unit_t unit, uint32_t value, uint32_t mask = 0xffffffff) override;
uint32_t get_gpio_ddr(unit_t unit) override;
void set_gpio_out(unit_t unit, uint32_t value, uint32_t mask = 0xffffffff) override;
uint32_t get_gpio_out(unit_t unit) override;
uint32_t read_gpio(unit_t unit) override;
void _set_pin_ctrl(unit_t, uint16_t);
void _set_atr_reg(unit_t, atr_reg_t, uint16_t);
void _set_gpio_ddr(unit_t, uint16_t);
void _set_gpio_out(unit_t, uint16_t);
void set_command_time(const uhd::time_spec_t& t) override;
uhd::time_spec_t get_command_time(void) override;
void write_i2c(uint16_t, const byte_vector_t&) override;
byte_vector_t read_i2c(uint16_t, size_t) override;
void write_spi(
unit_t unit, const spi_config_t& config, uint32_t data, size_t num_bits) override;
uint32_t read_write_spi(
unit_t unit, const spi_config_t& config, uint32_t data, size_t num_bits) override;
void set_clock_rate(unit_t, double) override;
std::vector<double> get_clock_rates(unit_t) override;
double get_clock_rate(unit_t) override;
void set_clock_enabled(unit_t, bool) override;
double get_codec_rate(unit_t) override;
void set_fe_connection(
unit_t unit, const std::string&, const fe_connection_t& fe_conn) override;
private:
usrp1_iface::sptr _iface;
usrp1_codec_ctrl::sptr _codec;
unsigned _dbsrx_classic_div;
const usrp1_impl::dboard_slot_t _dboard_slot;
const double& _master_clock_rate;
const dboard_id_t _rx_dboard_id;
uhd::dict<unit_t, uint16_t> _pin_ctrl, _gpio_out, _gpio_ddr;
uhd::dict<unit_t, uhd::dict<atr_reg_t, uint16_t>> _atr_regs;
};
/***********************************************************************
* Make Function
**********************************************************************/
dboard_iface::sptr usrp1_impl::make_dboard_iface(usrp1_iface::sptr iface,
usrp1_codec_ctrl::sptr codec,
usrp1_impl::dboard_slot_t dboard_slot,
const double& master_clock_rate,
const dboard_id_t& rx_dboard_id)
{
return dboard_iface::sptr(new usrp1_dboard_iface(
iface, codec, dboard_slot, master_clock_rate, rx_dboard_id));
}
/***********************************************************************
* Clock Rates
**********************************************************************/
static const dboard_id_t dbsrx_classic_id(0x0002);
/*
* Daughterboard reference clock register
*
* Bit 7 - 1 turns on refclk, 0 allows IO use
* Bits 6:0 - Divider value
*/
void usrp1_dboard_iface::set_clock_rate(unit_t unit, double rate)
{
assert_has(this->get_clock_rates(unit), rate, "dboard clock rate");
if (unit == UNIT_RX && _rx_dboard_id == dbsrx_classic_id) {
_dbsrx_classic_div = size_t(_master_clock_rate / rate);
switch (_dboard_slot) {
case usrp1_impl::DBOARD_SLOT_A:
_iface->poke32(FR_RX_A_REFCLK, (_dbsrx_classic_div & 0x7f) | 0x80);
break;
case usrp1_impl::DBOARD_SLOT_B:
_iface->poke32(FR_RX_B_REFCLK, (_dbsrx_classic_div & 0x7f) | 0x80);
break;
}
}
}
std::vector<double> usrp1_dboard_iface::get_clock_rates(unit_t unit)
{
std::vector<double> rates;
if (unit == UNIT_RX && _rx_dboard_id == dbsrx_classic_id) {
for (size_t div = 1; div <= 127; div++)
rates.push_back(_master_clock_rate / div);
} else {
rates.push_back(_master_clock_rate);
}
return rates;
}
double usrp1_dboard_iface::get_clock_rate(unit_t unit)
{
if (unit == UNIT_RX && _rx_dboard_id == dbsrx_classic_id) {
return _master_clock_rate / _dbsrx_classic_div;
}
return _master_clock_rate;
}
void usrp1_dboard_iface::set_clock_enabled(unit_t, bool)
{
// TODO we can only enable for special case anyway...
}
double usrp1_dboard_iface::get_codec_rate(unit_t)
{
return _master_clock_rate;
}
/***********************************************************************
* GPIO
**********************************************************************/
template <typename T>
static T shadow_it(T& shadow, const T& value, const T& mask)
{
shadow = (shadow & ~mask) | (value & mask);
return shadow;
}
void usrp1_dboard_iface::set_pin_ctrl(unit_t unit, uint32_t value, uint32_t mask)
{
_set_pin_ctrl(unit,
shadow_it(
_pin_ctrl[unit], static_cast<uint16_t>(value), static_cast<uint16_t>(mask)));
}
uint32_t usrp1_dboard_iface::get_pin_ctrl(unit_t unit)
{
return _pin_ctrl[unit];
}
void usrp1_dboard_iface::set_atr_reg(
unit_t unit, atr_reg_t reg, uint32_t value, uint32_t mask)
{
_set_atr_reg(unit,
reg,
shadow_it(_atr_regs[unit][reg],
static_cast<uint16_t>(value),
static_cast<uint16_t>(mask)));
}
uint32_t usrp1_dboard_iface::get_atr_reg(unit_t unit, atr_reg_t reg)
{
return _atr_regs[unit][reg];
}
void usrp1_dboard_iface::set_gpio_ddr(unit_t unit, uint32_t value, uint32_t mask)
{
_set_gpio_ddr(unit,
shadow_it(
_gpio_ddr[unit], static_cast<uint16_t>(value), static_cast<uint16_t>(mask)));
}
uint32_t usrp1_dboard_iface::get_gpio_ddr(unit_t unit)
{
return _gpio_ddr[unit];
}
void usrp1_dboard_iface::set_gpio_out(unit_t unit, uint32_t value, uint32_t mask)
{
_set_gpio_out(unit,
shadow_it(
_gpio_out[unit], static_cast<uint16_t>(value), static_cast<uint16_t>(mask)));
}
uint32_t usrp1_dboard_iface::get_gpio_out(unit_t unit)
{
return _gpio_out[unit];
}
uint32_t usrp1_dboard_iface::read_gpio(unit_t unit)
{
uint32_t out_value;
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
out_value = _iface->peek32(1);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
out_value = _iface->peek32(2);
else
UHD_THROW_INVALID_CODE_PATH();
switch (unit) {
case UNIT_RX:
return (uint32_t)((out_value >> 16) & 0x0000ffff);
case UNIT_TX:
return (uint32_t)((out_value >> 0) & 0x0000ffff);
default:
UHD_THROW_INVALID_CODE_PATH();
}
UHD_ASSERT_THROW(false);
}
void usrp1_dboard_iface::_set_pin_ctrl(unit_t unit, uint16_t value)
{
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_MASK_1, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_MASK_3, value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_MASK_0, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_MASK_2, value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void usrp1_dboard_iface::_set_gpio_ddr(unit_t unit, uint16_t value)
{
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_OE_1, 0xffff0000 | value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_OE_3, 0xffff0000 | value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_OE_0, 0xffff0000 | value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_OE_2, 0xffff0000 | value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void usrp1_dboard_iface::_set_gpio_out(unit_t unit, uint16_t value)
{
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_IO_1, 0xffff0000 | value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_IO_3, 0xffff0000 | value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_IO_0, 0xffff0000 | value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_IO_2, 0xffff0000 | value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void usrp1_dboard_iface::_set_atr_reg(unit_t unit, atr_reg_t atr, uint16_t value)
{
// Ignore unsupported states
if ((atr == ATR_REG_IDLE) || (atr == ATR_REG_TX_ONLY))
return;
if (atr == ATR_REG_RX_ONLY) {
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_RXVAL_1, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_RXVAL_3, value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_RXVAL_0, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_RXVAL_2, value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
} else if (atr == ATR_REG_FULL_DUPLEX) {
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_TXVAL_1, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_TXVAL_3, value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_TXVAL_0, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_TXVAL_2, value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
}
/***********************************************************************
* SPI
**********************************************************************/
/*!
* Static function to convert a unit type to a spi slave device number.
* \param unit the dboard interface unit type enum
* \param slot the side (A or B) the dboard is attached
* \return the slave device number
*/
static uint32_t unit_to_otw_spi_dev(
dboard_iface::unit_t unit, usrp1_impl::dboard_slot_t slot)
{
switch (unit) {
case dboard_iface::UNIT_TX:
if (slot == usrp1_impl::DBOARD_SLOT_A)
return SPI_ENABLE_TX_A;
else if (slot == usrp1_impl::DBOARD_SLOT_B)
return SPI_ENABLE_TX_B;
else
break;
case dboard_iface::UNIT_RX:
if (slot == usrp1_impl::DBOARD_SLOT_A)
return SPI_ENABLE_RX_A;
else if (slot == usrp1_impl::DBOARD_SLOT_B)
return SPI_ENABLE_RX_B;
else
break;
default:
break;
}
UHD_THROW_INVALID_CODE_PATH();
}
void usrp1_dboard_iface::write_spi(
unit_t unit, const spi_config_t& config, uint32_t data, size_t num_bits)
{
_iface->write_spi(unit_to_otw_spi_dev(unit, _dboard_slot), config, data, num_bits);
}
uint32_t usrp1_dboard_iface::read_write_spi(
unit_t unit, const spi_config_t& config, uint32_t data, size_t num_bits)
{
return _iface->read_spi(
unit_to_otw_spi_dev(unit, _dboard_slot), config, data, num_bits);
}
/***********************************************************************
* I2C
**********************************************************************/
void usrp1_dboard_iface::write_i2c(uint16_t addr, const byte_vector_t& bytes)
{
return _iface->write_i2c(addr, bytes);
}
byte_vector_t usrp1_dboard_iface::read_i2c(uint16_t addr, size_t num_bytes)
{
return _iface->read_i2c(addr, num_bytes);
}
/***********************************************************************
* Aux DAX/ADC
**********************************************************************/
void usrp1_dboard_iface::write_aux_dac(
dboard_iface::unit_t, aux_dac_t which, double value)
{
// same aux dacs for each unit
static const uhd::dict<aux_dac_t, usrp1_codec_ctrl::aux_dac_t> which_to_aux_dac =
map_list_of(AUX_DAC_A, usrp1_codec_ctrl::AUX_DAC_A)(AUX_DAC_B,
usrp1_codec_ctrl::AUX_DAC_B)(AUX_DAC_C, usrp1_codec_ctrl::AUX_DAC_C)(
AUX_DAC_D, usrp1_codec_ctrl::AUX_DAC_D);
_codec->write_aux_dac(which_to_aux_dac[which], value);
}
double usrp1_dboard_iface::read_aux_adc(dboard_iface::unit_t unit, aux_adc_t which)
{
static const uhd::dict<unit_t, uhd::dict<aux_adc_t, usrp1_codec_ctrl::aux_adc_t>>
unit_to_which_to_aux_adc = map_list_of(UNIT_RX,
map_list_of(AUX_ADC_A, usrp1_codec_ctrl::AUX_ADC_A1)(
AUX_ADC_B, usrp1_codec_ctrl::AUX_ADC_B1))(UNIT_TX,
map_list_of(AUX_ADC_A, usrp1_codec_ctrl::AUX_ADC_A2)(
AUX_ADC_B, usrp1_codec_ctrl::AUX_ADC_B2));
return _codec->read_aux_adc(unit_to_which_to_aux_adc[unit][which]);
}
/***********************************************************************
* Unsupported
**********************************************************************/
void usrp1_dboard_iface::set_command_time(const uhd::time_spec_t&)
{
throw uhd::not_implemented_error("timed command support not implemented");
}
uhd::time_spec_t usrp1_dboard_iface::get_command_time()
{
throw uhd::not_implemented_error("timed command support not implemented");
}
void usrp1_dboard_iface::set_fe_connection(
unit_t, const std::string&, const fe_connection_t&)
{
throw uhd::not_implemented_error(
"fe connection configuration support not implemented");
}
|