1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
//
// Copyright 2011-2012,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "soft_time_ctrl.hpp"
#include <uhd/utils/tasks.hpp>
#include <uhdlib/utils/system_time.hpp>
#include <boost/thread/condition.hpp>
#include <chrono>
#include <functional>
#include <iostream>
#include <memory>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
namespace pt = boost::posix_time;
static const time_spec_t TWIDDLE(0.0011);
soft_time_ctrl::~soft_time_ctrl(void)
{
/* NOP */
}
/***********************************************************************
* Soft time control implementation
**********************************************************************/
class soft_time_ctrl_impl : public soft_time_ctrl
{
public:
soft_time_ctrl_impl(const cb_fcn_type& stream_on_off)
: _nsamps_remaining(0)
, _stream_mode(stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS)
, _cmd_queue(2)
, _async_msg_queue(1000)
, _inline_msg_queue(1000)
, _stream_on_off(stream_on_off)
{
// synchronously spawn a new thread
_recv_cmd_task = task::make(std::bind(&soft_time_ctrl_impl::recv_cmd_task, this));
// initialize the time to something
this->set_time(time_spec_t(0.0));
}
/*******************************************************************
* Time control
******************************************************************/
void set_time(const time_spec_t& time) override
{
std::lock_guard<std::mutex> lock(_update_mutex);
_time_offset = uhd::get_system_time() - time;
}
time_spec_t get_time(void) override
{
std::lock_guard<std::mutex> lock(_update_mutex);
return time_now();
}
UHD_INLINE time_spec_t time_now(void)
{
// internal get time without scoped lock
return uhd::get_system_time() - _time_offset;
}
UHD_INLINE void sleep_until_time(
std::unique_lock<std::mutex>& lock, const time_spec_t& time)
{
boost::condition cond;
// use a condition variable to unlock, sleep, lock
const double seconds_to_sleep = (time - time_now()).get_real_secs();
cond.timed_wait(lock, pt::microseconds(long(seconds_to_sleep * 1e6)));
}
/*******************************************************************
* Receive control
******************************************************************/
size_t recv_post(rx_metadata_t& md, const size_t nsamps) override
{
std::lock_guard<std::mutex> lock(_update_mutex);
// Since it timed out on the receive, check for inline messages...
// Must do a post check because recv() will not wake up for a message.
if (md.error_code == rx_metadata_t::ERROR_CODE_TIMEOUT) {
if (_inline_msg_queue.pop_with_haste(md))
return 0;
}
// load the metadata with the expected time
md.has_time_spec = true;
md.time_spec = time_now();
// none of the stuff below matters in continuous streaming mode
if (_stream_mode == stream_cmd_t::STREAM_MODE_START_CONTINUOUS)
return nsamps;
// When to stop streaming:
// The samples have been received and the stream mode is non-continuous.
// Rewrite the sample count to clip to the requested number of samples.
if (_nsamps_remaining <= nsamps)
switch (_stream_mode) {
case stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE: {
rx_metadata_t metadata;
metadata.has_time_spec = true;
metadata.time_spec = this->time_now();
metadata.error_code = rx_metadata_t::ERROR_CODE_BROKEN_CHAIN;
_inline_msg_queue.push_with_pop_on_full(metadata);
} // continue to next case...
UHD_FALLTHROUGH
case stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE:
md.end_of_burst = true;
this->issue_stream_cmd(stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
return _nsamps_remaining;
default:
break;
}
// update the consumed samples
_nsamps_remaining -= nsamps;
return nsamps;
}
void issue_stream_cmd(const stream_cmd_t& cmd) override
{
_cmd_queue.push_with_wait(std::make_shared<stream_cmd_t>(cmd));
}
void stream_on_off(bool enb)
{
_stream_on_off(enb);
_nsamps_remaining = 0;
}
/*******************************************************************
* Transmit control
******************************************************************/
void send_pre(const tx_metadata_t& md, double& timeout) override
{
if (not md.has_time_spec)
return;
std::unique_lock<std::mutex> lock(_update_mutex);
time_spec_t time_at(md.time_spec - TWIDDLE);
// handle late packets
if (time_at < time_now()) {
async_metadata_t metadata;
metadata.channel = 0;
metadata.has_time_spec = true;
metadata.time_spec = this->time_now();
metadata.event_code = async_metadata_t::EVENT_CODE_TIME_ERROR;
_async_msg_queue.push_with_pop_on_full(metadata);
return;
}
timeout -= (time_at - time_now()).get_real_secs();
sleep_until_time(lock, time_at);
}
/*******************************************************************
* Thread control
******************************************************************/
void recv_cmd_handle_cmd(const stream_cmd_t& cmd)
{
std::unique_lock<std::mutex> lock(_update_mutex);
// handle the stream at time by sleeping
if (not cmd.stream_now) {
time_spec_t time_at(cmd.time_spec - TWIDDLE);
if (time_at < time_now()) {
rx_metadata_t metadata;
metadata.has_time_spec = true;
metadata.time_spec = this->time_now();
metadata.error_code = rx_metadata_t::ERROR_CODE_LATE_COMMAND;
_inline_msg_queue.push_with_pop_on_full(metadata);
this->issue_stream_cmd(stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
return;
} else {
sleep_until_time(lock, time_at);
}
}
// When to stop streaming:
// Stop streaming when the command is a stop and streaming.
if (cmd.stream_mode == stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS
and _stream_mode != stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS)
stream_on_off(false);
// When to start streaming:
// Start streaming when the command is not a stop and not streaming.
if (cmd.stream_mode != stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS
and _stream_mode == stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS)
stream_on_off(true);
// update the state
_nsamps_remaining += cmd.num_samps;
_stream_mode = cmd.stream_mode;
}
void recv_cmd_task(void)
{ // task is looped
std::shared_ptr<stream_cmd_t> cmd;
if (_cmd_queue.pop_with_timed_wait(cmd, 0.25)) {
recv_cmd_handle_cmd(*cmd);
}
}
bounded_buffer<async_metadata_t>& get_async_queue(void) override
{
return _async_msg_queue;
}
bounded_buffer<rx_metadata_t>& get_inline_queue(void) override
{
return _inline_msg_queue;
}
void stop(void) override
{
_recv_cmd_task.reset();
}
private:
std::mutex _update_mutex;
size_t _nsamps_remaining;
stream_cmd_t::stream_mode_t _stream_mode;
time_spec_t _time_offset;
bounded_buffer<std::shared_ptr<stream_cmd_t>> _cmd_queue;
bounded_buffer<async_metadata_t> _async_msg_queue;
bounded_buffer<rx_metadata_t> _inline_msg_queue;
const cb_fcn_type _stream_on_off;
task::sptr _recv_cmd_task;
};
/***********************************************************************
* Soft time control factor
**********************************************************************/
soft_time_ctrl::sptr soft_time_ctrl::make(const cb_fcn_type& stream_on_off)
{
return sptr(new soft_time_ctrl_impl(stream_on_off));
}
|