1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
//
// Copyright 2010-2012,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "clock_ctrl.hpp"
#include "ad9510_regs.hpp"
#include "usrp2_clk_regs.hpp"
#include "usrp2_regs.hpp" //spi slave constants
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <cmath>
#include <cstdint>
using namespace uhd;
static const bool enb_test_clk = false;
usrp2_clock_ctrl::~usrp2_clock_ctrl(void)
{
/* NOP */
}
/*!
* A usrp2 clock control specific to the ad9510 ic.
*/
class usrp2_clock_ctrl_impl : public usrp2_clock_ctrl
{
public:
usrp2_clock_ctrl_impl(usrp2_iface::sptr iface, uhd::spi_iface::sptr spiface)
{
_iface = iface;
_spiface = spiface;
clk_regs = usrp2_clk_regs_t(_iface->get_rev());
_ad9510_regs.cp_current_setting = ad9510_regs_t::CP_CURRENT_SETTING_3_0MA;
this->write_reg(clk_regs.pll_3);
// Setup the clock registers to 100MHz:
// This was already done by the firmware (or the host couldnt communicate).
// We could remove this part, and just leave it to the firmware.
// But why not leave it in for those who want to mess with clock settings?
// 100mhz = 10mhz/R * (P*B + A)
_ad9510_regs.pll_power_down = ad9510_regs_t::PLL_POWER_DOWN_NORMAL;
_ad9510_regs.prescaler_value = ad9510_regs_t::PRESCALER_VALUE_DIV2;
this->write_reg(clk_regs.pll_4);
_ad9510_regs.acounter = 0;
this->write_reg(clk_regs.acounter);
_ad9510_regs.bcounter_msb = 0;
_ad9510_regs.bcounter_lsb = 5;
this->write_reg(clk_regs.bcounter_msb);
this->write_reg(clk_regs.bcounter_lsb);
_ad9510_regs.ref_counter_msb = 0;
_ad9510_regs.ref_counter_lsb = 1; // r divider = 1
this->write_reg(clk_regs.ref_counter_msb);
this->write_reg(clk_regs.ref_counter_lsb);
/* regs will be updated in commands below */
this->enable_external_ref(false);
this->enable_rx_dboard_clock(false);
this->enable_tx_dboard_clock(false);
this->enable_mimo_clock_out(false);
/* private clock enables, must be set here */
this->enable_dac_clock(true);
this->enable_adc_clock(true);
this->enable_test_clock(enb_test_clk);
}
~usrp2_clock_ctrl_impl(void) override
{
UHD_SAFE_CALL(
// power down clock outputs
this->enable_external_ref(false); this->enable_rx_dboard_clock(false);
this->enable_tx_dboard_clock(false);
this->enable_dac_clock(false);
this->enable_adc_clock(false);
this->enable_mimo_clock_out(false);
this->enable_test_clock(false);)
}
void enable_mimo_clock_out(bool enb) override
{
// calculate the low and high dividers
size_t divider = size_t(this->get_master_clock_rate() / 10e6);
size_t high = divider / 2;
size_t low = divider - high;
switch (clk_regs.exp) {
case 2: // U2 rev 3
_ad9510_regs.power_down_lvpecl_out2 =
enb ? ad9510_regs_t::POWER_DOWN_LVPECL_OUT2_NORMAL
: ad9510_regs_t::POWER_DOWN_LVPECL_OUT2_SAFE_PD;
_ad9510_regs.output_level_lvpecl_out2 =
ad9510_regs_t::OUTPUT_LEVEL_LVPECL_OUT2_810MV;
// set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out2 = uhd::narrow_cast<uint8_t>(low - 1);
_ad9510_regs.divider_high_cycles_out2 =
uhd::narrow_cast<uint8_t>(high - 1);
_ad9510_regs.bypass_divider_out2 = 0;
break;
case 5: // U2 rev 4
_ad9510_regs.power_down_lvds_cmos_out5 = enb ? 0 : 1;
_ad9510_regs.lvds_cmos_select_out5 =
ad9510_regs_t::LVDS_CMOS_SELECT_OUT5_LVDS;
_ad9510_regs.output_level_lvds_out5 =
ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT5_1_75MA;
// set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out5 = uhd::narrow_cast<uint8_t>(low - 1);
_ad9510_regs.divider_high_cycles_out5 =
uhd::narrow_cast<uint8_t>(high - 1);
_ad9510_regs.bypass_divider_out5 = 0;
break;
case 6: // U2+
_ad9510_regs.power_down_lvds_cmos_out6 = enb ? 0 : 1;
_ad9510_regs.lvds_cmos_select_out6 =
ad9510_regs_t::LVDS_CMOS_SELECT_OUT6_LVDS;
_ad9510_regs.output_level_lvds_out6 =
ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT6_1_75MA;
// set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out6 = uhd::narrow_cast<uint8_t>(low - 1);
_ad9510_regs.divider_high_cycles_out6 =
uhd::narrow_cast<uint8_t>(high - 1);
_ad9510_regs.bypass_divider_out5 = 0;
break;
default:
break;
}
this->write_reg(clk_regs.output(clk_regs.exp));
this->write_reg(clk_regs.div_lo(clk_regs.exp));
this->update_regs();
}
// uses output clock 7 (cmos)
void enable_rx_dboard_clock(bool enb) override
{
switch (_iface->get_rev()) {
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
_ad9510_regs.power_down_lvds_cmos_out7 = enb ? 0 : 1;
_ad9510_regs.lvds_cmos_select_out7 =
ad9510_regs_t::LVDS_CMOS_SELECT_OUT7_LVDS;
_ad9510_regs.output_level_lvds_out7 =
ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT7_1_75MA;
this->write_reg(clk_regs.output(clk_regs.rx_db));
this->update_regs();
break;
default:
_ad9510_regs.power_down_lvds_cmos_out7 = enb ? 0 : 1;
_ad9510_regs.lvds_cmos_select_out7 =
ad9510_regs_t::LVDS_CMOS_SELECT_OUT7_CMOS;
_ad9510_regs.output_level_lvds_out7 =
ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT7_1_75MA;
this->write_reg(clk_regs.output(clk_regs.rx_db));
this->update_regs();
break;
}
}
void set_rate_rx_dboard_clock(double rate) override
{
assert_has(get_rates_rx_dboard_clock(), rate, "rx dboard clock rate");
size_t divider = size_t(get_master_clock_rate() / rate);
// bypass when the divider ratio is one
_ad9510_regs.bypass_divider_out7 = (divider == 1) ? 1 : 0;
// calculate the low and high dividers
size_t high = divider / 2;
size_t low = divider - high;
// set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out7 = uhd::narrow_cast<uint8_t>(low - 1);
_ad9510_regs.divider_high_cycles_out7 = uhd::narrow_cast<uint8_t>(high - 1);
// write the registers
this->write_reg(clk_regs.div_lo(clk_regs.rx_db));
this->write_reg(clk_regs.div_hi(clk_regs.rx_db));
this->update_regs();
}
std::vector<double> get_rates_rx_dboard_clock(void) override
{
std::vector<double> rates;
for (size_t i = 1; i <= 16 + 16; i++)
rates.push_back(get_master_clock_rate() / i);
return rates;
}
// uses output clock 6 (cmos) on USRP2, output clock 5 (cmos) on N200/N210 r3,
// and output clock 5 (lvds) on N200/N210 r4
void enable_tx_dboard_clock(bool enb) override
{
switch (_iface->get_rev()) {
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
_ad9510_regs.power_down_lvds_cmos_out5 = enb ? 0 : 1;
_ad9510_regs.lvds_cmos_select_out5 =
ad9510_regs_t::LVDS_CMOS_SELECT_OUT5_LVDS;
_ad9510_regs.output_level_lvds_out5 =
ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT5_1_75MA;
break;
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
_ad9510_regs.power_down_lvds_cmos_out5 = enb ? 0 : 1;
_ad9510_regs.lvds_cmos_select_out5 =
ad9510_regs_t::LVDS_CMOS_SELECT_OUT5_CMOS;
_ad9510_regs.output_level_lvds_out5 =
ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT5_1_75MA;
break;
case usrp2_iface::USRP2_REV3:
case usrp2_iface::USRP2_REV4:
_ad9510_regs.power_down_lvds_cmos_out6 = enb ? 0 : 1;
_ad9510_regs.lvds_cmos_select_out6 =
ad9510_regs_t::LVDS_CMOS_SELECT_OUT6_CMOS;
_ad9510_regs.output_level_lvds_out6 =
ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT6_1_75MA;
break;
default:
// throw uhd::not_implemented_error("enable_tx_dboard_clock: unknown
// hardware version");
break;
}
this->write_reg(clk_regs.output(clk_regs.tx_db));
this->update_regs();
}
void set_rate_tx_dboard_clock(double rate) override
{
assert_has(get_rates_tx_dboard_clock(), rate, "tx dboard clock rate");
size_t divider = size_t(get_master_clock_rate() / rate);
// bypass when the divider ratio is one
_ad9510_regs.bypass_divider_out6 = (divider == 1) ? 1 : 0;
// calculate the low and high dividers
size_t high = divider / 2;
size_t low = divider - high;
switch (clk_regs.tx_db) {
case 5: // USRP2+
_ad9510_regs.bypass_divider_out5 = (divider == 1) ? 1 : 0;
_ad9510_regs.divider_low_cycles_out5 = uhd::narrow_cast<uint8_t>(low - 1);
_ad9510_regs.divider_high_cycles_out5 =
uhd::narrow_cast<uint8_t>(high - 1);
break;
case 6: // USRP2
// bypass when the divider ratio is one
_ad9510_regs.bypass_divider_out6 = (divider == 1) ? 1 : 0;
// set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out6 = uhd::narrow_cast<uint8_t>(low - 1);
_ad9510_regs.divider_high_cycles_out6 =
uhd::narrow_cast<uint8_t>(high - 1);
break;
}
// write the registers
this->write_reg(clk_regs.div_hi(clk_regs.tx_db));
this->write_reg(clk_regs.div_lo(clk_regs.tx_db));
this->update_regs();
}
std::vector<double> get_rates_tx_dboard_clock(void) override
{
return get_rates_rx_dboard_clock(); // same master clock, same dividers...
}
void enable_test_clock(bool enb) override
{
_ad9510_regs.power_down_lvpecl_out0 =
enb ? ad9510_regs_t::POWER_DOWN_LVPECL_OUT0_NORMAL
: ad9510_regs_t::POWER_DOWN_LVPECL_OUT0_SAFE_PD;
_ad9510_regs.output_level_lvpecl_out0 =
ad9510_regs_t::OUTPUT_LEVEL_LVPECL_OUT0_810MV;
_ad9510_regs.divider_low_cycles_out0 = 0;
_ad9510_regs.divider_high_cycles_out0 = 0;
_ad9510_regs.bypass_divider_out0 = 1;
this->write_reg(0x3c);
this->write_reg(0x48);
this->write_reg(0x49);
}
/*!
* If we are to use an external reference, enable the charge pump.
* \param enb true to enable the CP
*/
void enable_external_ref(bool enb) override
{
_ad9510_regs.charge_pump_mode = (enb) ? ad9510_regs_t::CHARGE_PUMP_MODE_NORMAL
: ad9510_regs_t::CHARGE_PUMP_MODE_3STATE;
_ad9510_regs.pll_mux_control = ad9510_regs_t::PLL_MUX_CONTROL_DLD_HIGH;
_ad9510_regs.pfd_polarity = ad9510_regs_t::PFD_POLARITY_POS;
this->write_reg(clk_regs.pll_2);
this->update_regs();
}
double get_master_clock_rate(void) override
{
return 100e6;
}
void set_mimo_clock_delay(double delay) override
{
// delay_val is a 5-bit value (0-31) for fine control
// the equations below determine delay for a given ramp current, # of caps and
// fine delay register delay range: range_ns = 200*((caps+3)/i_ramp_ua)*1.3286
// offset (zero delay):
// offset_ns = 0.34 + (1600 - i_ramp_ua)*1e-4 + ((caps-1)/ramp)*6
// delay_ns = offset_ns + range_ns * delay / 31
int delay_val = static_cast<int>(std::lround(delay / 9.744e-9 * 31));
if (delay_val == 0) {
switch (clk_regs.exp) {
case 5:
_ad9510_regs.delay_control_out5 = 1;
break;
case 6:
_ad9510_regs.delay_control_out6 = 1;
break;
default:
break; // delay not supported on U2 rev 3
}
} else {
switch (clk_regs.exp) {
case 5:
_ad9510_regs.delay_control_out5 = 0;
_ad9510_regs.ramp_current_out5 =
ad9510_regs_t::RAMP_CURRENT_OUT5_200UA;
_ad9510_regs.ramp_capacitor_out5 =
ad9510_regs_t::RAMP_CAPACITOR_OUT5_4CAPS;
_ad9510_regs.delay_fine_adjust_out5 = delay_val;
this->write_reg(0x34);
this->write_reg(0x35);
this->write_reg(0x36);
break;
case 6:
_ad9510_regs.delay_control_out6 = 0;
_ad9510_regs.ramp_current_out6 =
ad9510_regs_t::RAMP_CURRENT_OUT6_200UA;
_ad9510_regs.ramp_capacitor_out6 =
ad9510_regs_t::RAMP_CAPACITOR_OUT6_4CAPS;
_ad9510_regs.delay_fine_adjust_out6 = delay_val;
this->write_reg(0x38);
this->write_reg(0x39);
this->write_reg(0x3A);
break;
default:
break;
}
}
}
private:
/*!
* Write a single register to the spi regs.
* \param addr the address to write
*/
void write_reg(uint8_t addr)
{
uint32_t data = _ad9510_regs.get_write_reg(addr);
_spiface->write_spi(SPI_SS_AD9510, spi_config_t::EDGE_RISE, data, 24);
}
/*!
* Tells the ad9510 to latch the settings into the operational registers.
*/
void update_regs(void)
{
_ad9510_regs.update_registers = 1;
this->write_reg(clk_regs.update);
}
// uses output clock 3 (pecl)
// this is the same between USRP2 and USRP2+ and doesn't get a switch statement
void enable_dac_clock(bool enb)
{
_ad9510_regs.power_down_lvpecl_out3 =
(enb) ? ad9510_regs_t::POWER_DOWN_LVPECL_OUT3_NORMAL
: ad9510_regs_t::POWER_DOWN_LVPECL_OUT3_SAFE_PD;
_ad9510_regs.output_level_lvpecl_out3 =
ad9510_regs_t::OUTPUT_LEVEL_LVPECL_OUT3_810MV;
_ad9510_regs.bypass_divider_out3 = 1;
this->write_reg(clk_regs.output(clk_regs.dac));
this->write_reg(clk_regs.div_hi(clk_regs.dac));
this->update_regs();
}
// uses output clock 4 (lvds) on USRP2 and output clock 2 (lvpecl) on USRP2+
void enable_adc_clock(bool enb)
{
switch (clk_regs.adc) {
case 2:
_ad9510_regs.power_down_lvpecl_out2 =
enb ? ad9510_regs_t::POWER_DOWN_LVPECL_OUT2_NORMAL
: ad9510_regs_t::POWER_DOWN_LVPECL_OUT2_SAFE_PD;
_ad9510_regs.output_level_lvpecl_out2 =
ad9510_regs_t::OUTPUT_LEVEL_LVPECL_OUT2_500MV;
_ad9510_regs.bypass_divider_out2 = 1;
break;
case 4:
_ad9510_regs.power_down_lvds_cmos_out4 = enb ? 0 : 1;
_ad9510_regs.lvds_cmos_select_out4 =
ad9510_regs_t::LVDS_CMOS_SELECT_OUT4_LVDS;
_ad9510_regs.output_level_lvds_out4 =
ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT4_1_75MA;
_ad9510_regs.bypass_divider_out4 = 1;
break;
}
this->write_reg(clk_regs.output(clk_regs.adc));
this->write_reg(clk_regs.div_hi(clk_regs.adc));
this->update_regs();
}
usrp2_iface::sptr _iface;
uhd::spi_iface::sptr _spiface;
usrp2_clk_regs_t clk_regs;
ad9510_regs_t _ad9510_regs;
};
/***********************************************************************
* Public make function for the ad9510 clock control
**********************************************************************/
usrp2_clock_ctrl::sptr usrp2_clock_ctrl::make(
usrp2_iface::sptr iface, uhd::spi_iface::sptr spiface)
{
return sptr(new usrp2_clock_ctrl_impl(iface, spiface));
}
|