1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
//
// Copyright 2010-2012,2014,2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "usrp2_impl.hpp"
#include "fw_common.h"
#include <uhd/exception.hpp>
#include <uhd/transport/if_addrs.hpp>
#include <uhd/transport/udp_zero_copy.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhd/utils/static.hpp>
#include <uhdlib/usrp/common/apply_corrections.hpp>
#include <boost/asio.hpp>
#include <boost/asio/ip/address_v4.hpp>
#include <boost/format.hpp>
#include <cmath>
#include <functional>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
// A reasonable number of frames for send/recv and async/sync
static const size_t DEFAULT_NUM_FRAMES = 32;
/***********************************************************************
* Discovery over the udp transport
**********************************************************************/
device_addrs_t usrp2_find(const device_addr_t& hint_)
{
// handle the multi-device discovery
device_addrs_t hints = separate_device_addr(hint_);
if (hints.size() > 1) {
device_addrs_t found_devices;
std::string error_msg;
for (const device_addr_t& hint_i : hints) {
device_addrs_t found_devices_i = usrp2_find(hint_i);
if (found_devices_i.size() != 1)
error_msg +=
str(boost::format(
"Could not resolve device hint \"%s\" to a single device.")
% hint_i.to_string());
else
found_devices.push_back(found_devices_i[0]);
}
if (found_devices.empty())
return device_addrs_t();
if (not error_msg.empty())
throw uhd::value_error(error_msg);
return device_addrs_t(1, combine_device_addrs(found_devices));
}
// initialize the hint for a single device case
UHD_ASSERT_THROW(hints.size() <= 1);
hints.resize(1); // in case it was empty
device_addr_t hint = hints[0];
device_addrs_t usrp2_addrs;
// return an empty list of addresses when type is set to non-usrp2
if (hint.has_key("type") and hint["type"] != "usrp2")
return usrp2_addrs;
// Return an empty list of addresses when a resource is specified,
// since a resource is intended for a different, non-USB, device.
if (hint.has_key("resource"))
return usrp2_addrs;
// if no address was specified, send a broadcast on each interface
if (not hint.has_key("addr")) {
for (const if_addrs_t& if_addrs : get_if_addrs()) {
// avoid the loopback device
if (if_addrs.inet == boost::asio::ip::address_v4::loopback().to_string())
continue;
// create a new hint with this broadcast address
device_addr_t new_hint = hint;
new_hint["addr"] = if_addrs.bcast;
// call discover with the new hint and append results
device_addrs_t new_usrp2_addrs = usrp2_find(new_hint);
usrp2_addrs.insert(
usrp2_addrs.begin(), new_usrp2_addrs.begin(), new_usrp2_addrs.end());
}
return usrp2_addrs;
}
// Create a UDP transport to communicate:
// Some devices will cause a throw when opened for a broadcast address.
// We print and recover so the caller can loop through all bcast addrs.
udp_simple::sptr udp_transport;
try {
udp_transport = udp_simple::make_broadcast(
hint["addr"], BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT));
} catch (const std::exception& e) {
UHD_LOGGER_ERROR("USRP2")
<< "Cannot open UDP transport on " << hint["addr"] << ": " << e.what();
return usrp2_addrs; // dont throw, but return empty address so caller can insert
}
// send a hello control packet
usrp2_ctrl_data_t ctrl_data_out = usrp2_ctrl_data_t();
ctrl_data_out.proto_ver = uhd::htonx<uint32_t>(USRP2_FW_COMPAT_NUM);
ctrl_data_out.id = uhd::htonx<uint32_t>(USRP2_CTRL_ID_WAZZUP_BRO);
try {
udp_transport->send(boost::asio::buffer(&ctrl_data_out, sizeof(ctrl_data_out)));
} catch (const std::exception& ex) {
UHD_LOGGER_ERROR("USRP2") << "USRP2 Network discovery error " << ex.what();
} catch (...) {
UHD_LOGGER_ERROR("USRP2") << "USRP2 Network discovery unknown error ";
}
// loop and recieve until the timeout
uint8_t usrp2_ctrl_data_in_mem[udp_simple::mtu]; // allocate max bytes for recv
const usrp2_ctrl_data_t* ctrl_data_in =
reinterpret_cast<const usrp2_ctrl_data_t*>(usrp2_ctrl_data_in_mem);
while (true) {
size_t len = udp_transport->recv(boost::asio::buffer(usrp2_ctrl_data_in_mem));
if (len > offsetof(usrp2_ctrl_data_t, data)
and ntohl(ctrl_data_in->id) == USRP2_CTRL_ID_WAZZUP_DUDE) {
// make a boost asio ipv4 with the raw addr in host byte order
device_addr_t new_addr;
new_addr["type"] = "usrp2";
// We used to get the address from the control packet.
// Now now uses the socket itself to yield the address.
// boost::asio::ip::address_v4 ip_addr(ntohl(ctrl_data_in->data.ip_addr));
// new_addr["addr"] = ip_addr.to_string();
new_addr["addr"] = udp_transport->get_recv_addr();
// Attempt a simple 2-way communication with a connected socket.
// Reason: Although the USRP will respond the broadcast above,
// we may not be able to communicate directly (non-broadcast).
udp_simple::sptr ctrl_xport = udp_simple::make_connected(
new_addr["addr"], BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT));
ctrl_xport->send(boost::asio::buffer(&ctrl_data_out, sizeof(ctrl_data_out)));
size_t len = ctrl_xport->recv(boost::asio::buffer(usrp2_ctrl_data_in_mem));
if (len > offsetof(usrp2_ctrl_data_t, data)
and ntohl(ctrl_data_in->id) == USRP2_CTRL_ID_WAZZUP_DUDE) {
// found the device, open up for communication!
} else {
// otherwise we don't find it...
continue;
}
// Attempt to read the name from the EEPROM and perform filtering.
// This operation can throw due to compatibility mismatch.
try {
usrp2_iface::sptr iface = usrp2_iface::make(ctrl_xport);
if (iface->is_device_locked())
continue; // ignore locked devices
mboard_eeprom_t mb_eeprom = iface->mb_eeprom;
new_addr["name"] = mb_eeprom["name"];
new_addr["serial"] = mb_eeprom["serial"];
} catch (const std::exception&) {
// set these values as empty string so the device may still be found
// and the filter's below can still operate on the discovered device
new_addr["name"] = "";
new_addr["serial"] = "";
}
// filter the discovered device below by matching optional keys
if ((not hint.has_key("name") or hint["name"] == new_addr["name"])
and (not hint.has_key("serial")
or hint["serial"] == new_addr["serial"])) {
usrp2_addrs.push_back(new_addr);
}
// dont break here, it will exit the while loop
// just continue on to the next loop iteration
}
if (len == 0)
break; // timeout
}
return usrp2_addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr usrp2_make(const device_addr_t& device_addr)
{
return device::sptr(new usrp2_impl(device_addr));
}
UHD_STATIC_BLOCK(register_usrp2_device)
{
device::register_device(&usrp2_find, &usrp2_make, device::USRP);
}
/***********************************************************************
* MTU Discovery
**********************************************************************/
struct mtu_result_t
{
size_t recv_mtu, send_mtu;
};
static mtu_result_t determine_mtu(const std::string& addr, const mtu_result_t& user_mtu)
{
udp_simple::sptr udp_sock =
udp_simple::make_connected(addr, BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT));
// The FPGA offers 4K buffers, and the user may manually request this.
// However, multiple simultaneous receives (2DSP slave + 2DSP master),
// require that buffering to be used internally, and this is a safe setting.
std::vector<uint8_t> buffer(std::max(user_mtu.recv_mtu, user_mtu.send_mtu));
usrp2_ctrl_data_t* ctrl_data = reinterpret_cast<usrp2_ctrl_data_t*>(&buffer.front());
static const double echo_timeout = 0.020; // 20 ms
// test holler - check if its supported in this fw version
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(sizeof(usrp2_ctrl_data_t));
udp_sock->send(boost::asio::buffer(buffer, sizeof(usrp2_ctrl_data_t)));
udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (ntohl(ctrl_data->id) != USRP2_CTRL_ID_HOLLER_BACK_DUDE)
throw uhd::not_implemented_error("holler protocol not implemented");
size_t min_recv_mtu = sizeof(usrp2_ctrl_data_t), max_recv_mtu = user_mtu.recv_mtu;
size_t min_send_mtu = sizeof(usrp2_ctrl_data_t), max_send_mtu = user_mtu.send_mtu;
while (min_recv_mtu < max_recv_mtu) {
size_t test_mtu = (max_recv_mtu / 2 + min_recv_mtu / 2 + 3) & ~3;
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(test_mtu);
udp_sock->send(boost::asio::buffer(buffer, sizeof(usrp2_ctrl_data_t)));
size_t len = udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (len >= test_mtu)
min_recv_mtu = test_mtu;
else
max_recv_mtu = test_mtu - 4;
}
while (min_send_mtu < max_send_mtu) {
size_t test_mtu = (max_send_mtu / 2 + min_send_mtu / 2 + 3) & ~3;
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(sizeof(usrp2_ctrl_data_t));
udp_sock->send(boost::asio::buffer(buffer, test_mtu));
size_t len = udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (len >= sizeof(usrp2_ctrl_data_t))
len = ntohl(ctrl_data->data.echo_args.len);
if (len >= test_mtu)
min_send_mtu = test_mtu;
else
max_send_mtu = test_mtu - 4;
}
mtu_result_t mtu;
mtu.recv_mtu = min_recv_mtu;
mtu.send_mtu = min_send_mtu;
return mtu;
}
/***********************************************************************
* Helpers
**********************************************************************/
static zero_copy_if::sptr make_xport(const std::string& addr,
const std::string& port,
const device_addr_t& hints,
const std::string& filter)
{
// only copy hints that contain the filter word
device_addr_t filtered_hints;
for (const std::string& key : hints.keys()) {
if (key.find(filter) == std::string::npos)
continue;
filtered_hints[key] = hints[key];
}
zero_copy_xport_params default_buff_args;
default_buff_args.send_frame_size = transport::udp_simple::mtu;
default_buff_args.recv_frame_size = transport::udp_simple::mtu;
default_buff_args.num_send_frames = DEFAULT_NUM_FRAMES;
default_buff_args.num_recv_frames = DEFAULT_NUM_FRAMES;
// make the transport object with the filtered hints
udp_zero_copy::buff_params ignored_params;
zero_copy_if::sptr xport = udp_zero_copy::make(
addr, port, default_buff_args, ignored_params, filtered_hints);
// Send a small data packet so the usrp2 knows the udp source port.
// This setup must happen before further initialization occurs
// or the async update packets will cause ICMP destination unreachable.
static const uint32_t data[2] = {uhd::htonx(uint32_t(0 /* don't care seq num */)),
uhd::htonx(uint32_t(USRP2_INVALID_VRT_HEADER))};
transport::managed_send_buffer::sptr send_buff = xport->get_send_buff();
std::memcpy(send_buff->cast<void*>(), &data, sizeof(data));
send_buff->commit(sizeof(data));
return xport;
}
/***********************************************************************
* Structors
**********************************************************************/
usrp2_impl::usrp2_impl(const device_addr_t& _device_addr)
: device_addr(_device_addr), _pirate_task_exit(false)
{
UHD_LOGGER_INFO("USRP2") << "Opening a USRP2/N-Series device...";
// setup the dsp transport hints (default to a large recv buff)
if (not device_addr.has_key("recv_buff_size")) {
#if defined(UHD_PLATFORM_MACOS) || defined(UHD_PLATFORM_BSD)
// limit buffer resize on macos or it will error
device_addr["recv_buff_size"] = "1e6";
#elif defined(UHD_PLATFORM_LINUX) || defined(UHD_PLATFORM_WIN32)
// set to half-a-second of buffering at max rate
device_addr["recv_buff_size"] = "50e6";
#endif
}
if (not device_addr.has_key("send_buff_size")) {
// The buffer should be the size of the SRAM on the device,
// because we will never commit more than the SRAM can hold.
device_addr["send_buff_size"] = std::to_string(USRP2_SRAM_BYTES);
}
device_addrs_t device_args = separate_device_addr(device_addr);
// extract the user's requested MTU size or default
mtu_result_t user_mtu;
user_mtu.recv_mtu =
size_t(device_addr.cast<double>("recv_frame_size", udp_simple::mtu));
user_mtu.send_mtu =
size_t(device_addr.cast<double>("send_frame_size", udp_simple::mtu));
try {
// calculate the minimum send and recv mtu of all devices
mtu_result_t mtu = determine_mtu(device_args[0]["addr"], user_mtu);
for (size_t i = 1; i < device_args.size(); i++) {
mtu_result_t mtu_i = determine_mtu(device_args[i]["addr"], user_mtu);
mtu.recv_mtu = std::min(mtu.recv_mtu, mtu_i.recv_mtu);
mtu.send_mtu = std::min(mtu.send_mtu, mtu_i.send_mtu);
}
device_addr["recv_frame_size"] = std::to_string(mtu.recv_mtu);
device_addr["send_frame_size"] = std::to_string(mtu.send_mtu);
UHD_LOGGER_INFO("USRP2")
<< "Current recv frame size: " << mtu.recv_mtu << " bytes";
UHD_LOGGER_INFO("USRP2")
<< "Current send frame size: " << mtu.send_mtu << " bytes";
} catch (const uhd::not_implemented_error&) {
// just ignore this error, makes older fw work...
}
device_args = separate_device_addr(device_addr); // update args for new frame sizes
////////////////////////////////////////////////////////////////////
// create controller objects and initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree = property_tree::make();
_type = device::USRP;
_ignore_cal_file = device_addr.has_key("ignore-cal-file");
_tree->create<std::string>("/name").set("USRP2 / N-Series Device");
for (size_t mbi = 0; mbi < device_args.size(); mbi++) {
const device_addr_t device_args_i = device_args[mbi];
const std::string mb = std::to_string(mbi);
const std::string addr = device_args_i["addr"];
const fs_path mb_path = "/mboards/" + mb;
////////////////////////////////////////////////////////////////
// create the iface that controls i2c, spi, uart, and wb
////////////////////////////////////////////////////////////////
_mbc[mb].iface = usrp2_iface::make(
udp_simple::make_connected(addr, BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT)));
_tree->create<std::string>(mb_path / "name").set(_mbc[mb].iface->get_cname());
_tree->create<std::string>(mb_path / "fw_version")
.set(_mbc[mb].iface->get_fw_version_string());
// check the fpga compatibility number
const uint32_t fpga_compat_num = _mbc[mb].iface->peek32(U2_REG_COMPAT_NUM_RB);
uint16_t fpga_major = fpga_compat_num >> 16,
fpga_minor = fpga_compat_num & 0xffff;
if (fpga_major == 0) { // old version scheme
fpga_major = fpga_minor;
fpga_minor = 0;
}
int expected_fpga_compat_num =
std::min(USRP2_FPGA_COMPAT_NUM, N200_FPGA_COMPAT_NUM);
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP2_REV3:
case usrp2_iface::USRP2_REV4:
expected_fpga_compat_num = USRP2_FPGA_COMPAT_NUM;
break;
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N210_R4:
expected_fpga_compat_num = N200_FPGA_COMPAT_NUM;
break;
default:
// handle case where the MB EEPROM is not programmed
if (fpga_major == USRP2_FPGA_COMPAT_NUM
or fpga_major == N200_FPGA_COMPAT_NUM) {
UHD_LOGGER_WARNING("USRP2")
<< "Unable to identify device - assuming USRP2/N-Series device";
expected_fpga_compat_num = fpga_major;
}
}
if (fpga_major != expected_fpga_compat_num) {
throw uhd::runtime_error(
str(boost::format(
"\nPlease update the firmware and FPGA images for your device.\n"
"See the application notes for USRP2/N-Series for instructions.\n"
"Expected FPGA compatibility number %d, but got %d:\n"
"The FPGA build is not compatible with the host code build.\n"
"%s\n")
% expected_fpga_compat_num % fpga_major
% _mbc[mb].iface->images_warn_help_message()));
}
_tree->create<std::string>(mb_path / "fpga_version")
.set(str(boost::format("%u.%u") % fpga_major % fpga_minor));
// lock the device/motherboard to this process
_mbc[mb].iface->lock_device(true);
////////////////////////////////////////////////////////////////
// construct transports for RX and TX DSPs
////////////////////////////////////////////////////////////////
UHD_LOGGER_TRACE("USRP2") << "Making transport for RX DSP0...";
_mbc[mb].rx_dsp_xports.push_back(make_xport(
addr, BOOST_STRINGIZE(USRP2_UDP_RX_DSP0_PORT), device_args_i, "recv"));
UHD_LOGGER_TRACE("USRP2") << "Making transport for RX DSP1...";
_mbc[mb].rx_dsp_xports.push_back(make_xport(
addr, BOOST_STRINGIZE(USRP2_UDP_RX_DSP1_PORT), device_args_i, "recv"));
UHD_LOGGER_TRACE("USRP2") << "Making transport for TX DSP0...";
_mbc[mb].tx_dsp_xport = make_xport(
addr, BOOST_STRINGIZE(USRP2_UDP_TX_DSP0_PORT), device_args_i, "send");
UHD_LOGGER_TRACE("USRP2") << "Making transport for Control...";
_mbc[mb].fifo_ctrl_xport = make_xport(
addr, BOOST_STRINGIZE(USRP2_UDP_FIFO_CRTL_PORT), device_addr_t(), "");
// set the filter on the router to take dsp data from this port
_mbc[mb].iface->poke32(U2_REG_ROUTER_CTRL_PORTS,
(USRP2_UDP_FIFO_CRTL_PORT << 16) | USRP2_UDP_TX_DSP0_PORT);
// create the fifo control interface for high speed register access
_mbc[mb].fifo_ctrl = usrp2_fifo_ctrl::make(_mbc[mb].fifo_ctrl_xport);
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
_mbc[mb].wbiface = _mbc[mb].fifo_ctrl;
_mbc[mb].spiface = _mbc[mb].fifo_ctrl;
break;
default:
_mbc[mb].wbiface = _mbc[mb].iface;
_mbc[mb].spiface = _mbc[mb].iface;
break;
}
_tree->create<double>(mb_path / "link_max_rate").set(USRP2_LINK_RATE_BPS);
////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////
_tree->create<mboard_eeprom_t>(mb_path / "eeprom")
.set(_mbc[mb].iface->mb_eeprom)
.add_coerced_subscriber(
std::bind(&usrp2_impl::set_mb_eeprom, this, mb, std::placeholders::_1));
////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////
_mbc[mb].clock = usrp2_clock_ctrl::make(_mbc[mb].iface, _mbc[mb].spiface);
_tree->create<double>(mb_path / "tick_rate")
.set_publisher(
std::bind(&usrp2_clock_ctrl::get_master_clock_rate, _mbc[mb].clock))
.add_coerced_subscriber(
std::bind(&usrp2_impl::update_tick_rate, this, std::placeholders::_1));
////////////////////////////////////////////////////////////////
// create codec control objects
////////////////////////////////////////////////////////////////
const fs_path rx_codec_path = mb_path / "rx_codecs/A";
const fs_path tx_codec_path = mb_path / "tx_codecs/A";
_tree->create<int>(rx_codec_path / "gains"); // phony property so this dir exists
_tree->create<int>(tx_codec_path / "gains"); // phony property so this dir exists
_mbc[mb].codec = usrp2_codec_ctrl::make(_mbc[mb].iface, _mbc[mb].spiface);
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4: {
_tree->create<std::string>(rx_codec_path / "name").set("ads62p44");
_tree->create<meta_range_t>(rx_codec_path / "gains/digital/range")
.set(meta_range_t(0, 6.0, 0.5));
_tree->create<double>(rx_codec_path / "gains/digital/value")
.add_coerced_subscriber(
std::bind(&usrp2_codec_ctrl::set_rx_digital_gain,
_mbc[mb].codec,
std::placeholders::_1))
.set(0);
_tree->create<meta_range_t>(rx_codec_path / "gains/fine/range")
.set(meta_range_t(0, 0.5, 0.05));
_tree->create<double>(rx_codec_path / "gains/fine/value")
.add_coerced_subscriber(
std::bind(&usrp2_codec_ctrl::set_rx_digital_fine_gain,
_mbc[mb].codec,
std::placeholders::_1))
.set(0);
} break;
case usrp2_iface::USRP2_REV3:
case usrp2_iface::USRP2_REV4:
_tree->create<std::string>(rx_codec_path / "name").set("ltc2284");
break;
case usrp2_iface::USRP_NXXX:
_tree->create<std::string>(rx_codec_path / "name").set("??????");
break;
}
_tree->create<std::string>(tx_codec_path / "name").set("ad9777");
////////////////////////////////////////////////////////////////////
// Create the GPSDO control
////////////////////////////////////////////////////////////////////
static const uint32_t dont_look_for_gpsdo = 0x1234abcdul;
// disable check for internal GPSDO when not the following:
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
break;
default:
_mbc[mb].iface->pokefw(U2_FW_REG_HAS_GPSDO, dont_look_for_gpsdo);
}
// otherwise if not disabled, look for the internal GPSDO
if (_mbc[mb].iface->peekfw(U2_FW_REG_HAS_GPSDO) != dont_look_for_gpsdo) {
UHD_LOGGER_INFO("USRP2") << "Detecting internal GPSDO.... ";
try {
_mbc[mb].gps =
gps_ctrl::make(udp_simple::make_uart(udp_simple::make_connected(
addr, BOOST_STRINGIZE(USRP2_UDP_UART_GPS_PORT))));
} catch (std::exception& e) {
UHD_LOGGER_ERROR("USRP2")
<< "An error occurred making GPSDO control: " << e.what();
}
if (_mbc[mb].gps and _mbc[mb].gps->gps_detected()) {
for (const std::string& name : _mbc[mb].gps->get_sensors()) {
_tree->create<sensor_value_t>(mb_path / "sensors" / name)
.set_publisher(
std::bind(&gps_ctrl::get_sensor, _mbc[mb].gps, name));
}
} else {
_mbc[mb].iface->pokefw(U2_FW_REG_HAS_GPSDO, dont_look_for_gpsdo);
}
}
////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////
_tree->create<sensor_value_t>(mb_path / "sensors/mimo_locked")
.set_publisher(std::bind(&usrp2_impl::get_mimo_locked, this, mb));
_tree->create<sensor_value_t>(mb_path / "sensors/ref_locked")
.set_publisher(std::bind(&usrp2_impl::get_ref_locked, this, mb));
////////////////////////////////////////////////////////////////
// create frontend control objects
////////////////////////////////////////////////////////////////
_mbc[mb].rx_fe =
rx_frontend_core_200::make(_mbc[mb].wbiface, U2_REG_SR_ADDR(SR_RX_FRONT));
_mbc[mb].tx_fe =
tx_frontend_core_200::make(_mbc[mb].wbiface, U2_REG_SR_ADDR(SR_TX_FRONT));
_tree->create<subdev_spec_t>(mb_path / "rx_subdev_spec")
.add_coerced_subscriber(std::bind(
&usrp2_impl::update_rx_subdev_spec, this, mb, std::placeholders::_1));
_tree->create<subdev_spec_t>(mb_path / "tx_subdev_spec")
.add_coerced_subscriber(std::bind(
&usrp2_impl::update_tx_subdev_spec, this, mb, std::placeholders::_1));
const fs_path rx_fe_path = mb_path / "rx_frontends" / "A";
const fs_path tx_fe_path = mb_path / "tx_frontends" / "A";
_tree->create<std::complex<double>>(rx_fe_path / "dc_offset" / "value")
.set_coercer(std::bind(&rx_frontend_core_200::set_dc_offset,
_mbc[mb].rx_fe,
std::placeholders::_1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<bool>(rx_fe_path / "dc_offset" / "enable")
.add_coerced_subscriber(std::bind(&rx_frontend_core_200::set_dc_offset_auto,
_mbc[mb].rx_fe,
std::placeholders::_1))
.set(true);
_tree->create<std::complex<double>>(rx_fe_path / "iq_balance" / "value")
.add_coerced_subscriber(std::bind(&rx_frontend_core_200::set_iq_balance,
_mbc[mb].rx_fe,
std::placeholders::_1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<std::complex<double>>(tx_fe_path / "dc_offset" / "value")
.set_coercer(std::bind(&tx_frontend_core_200::set_dc_offset,
_mbc[mb].tx_fe,
std::placeholders::_1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<std::complex<double>>(tx_fe_path / "iq_balance" / "value")
.add_coerced_subscriber(std::bind(&tx_frontend_core_200::set_iq_balance,
_mbc[mb].tx_fe,
std::placeholders::_1))
.set(std::complex<double>(0.0, 0.0));
////////////////////////////////////////////////////////////////
// create rx dsp control objects
////////////////////////////////////////////////////////////////
_mbc[mb].rx_dsps.push_back(rx_dsp_core_200::make(_mbc[mb].wbiface,
U2_REG_SR_ADDR(SR_RX_DSP0),
U2_REG_SR_ADDR(SR_RX_CTRL0),
USRP2_RX_SID_BASE + 0,
true));
_mbc[mb].rx_dsps.push_back(rx_dsp_core_200::make(_mbc[mb].wbiface,
U2_REG_SR_ADDR(SR_RX_DSP1),
U2_REG_SR_ADDR(SR_RX_CTRL1),
USRP2_RX_SID_BASE + 1,
true));
for (size_t dspno = 0; dspno < _mbc[mb].rx_dsps.size(); dspno++) {
_mbc[mb].rx_dsps[dspno]->set_link_rate(USRP2_LINK_RATE_BPS);
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(&rx_dsp_core_200::set_tick_rate,
_mbc[mb].rx_dsps[dspno],
std::placeholders::_1));
fs_path rx_dsp_path = mb_path / "rx_dsps" / dspno;
_tree->create<meta_range_t>(rx_dsp_path / "rate/range")
.set_publisher(
std::bind(&rx_dsp_core_200::get_host_rates, _mbc[mb].rx_dsps[dspno]));
_tree->create<double>(rx_dsp_path / "rate/value")
.set(1e6) // some default
.set_coercer(std::bind(&rx_dsp_core_200::set_host_rate,
_mbc[mb].rx_dsps[dspno],
std::placeholders::_1))
.add_coerced_subscriber(std::bind(&usrp2_impl::update_rx_samp_rate,
this,
mb,
dspno,
std::placeholders::_1));
_tree->create<double>(rx_dsp_path / "freq/value")
.set_coercer(std::bind(&rx_dsp_core_200::set_freq,
_mbc[mb].rx_dsps[dspno],
std::placeholders::_1));
_tree->create<meta_range_t>(rx_dsp_path / "freq/range")
.set_publisher(
std::bind(&rx_dsp_core_200::get_freq_range, _mbc[mb].rx_dsps[dspno]));
_tree->create<stream_cmd_t>(rx_dsp_path / "stream_cmd")
.add_coerced_subscriber(std::bind(&rx_dsp_core_200::issue_stream_command,
_mbc[mb].rx_dsps[dspno],
std::placeholders::_1));
}
////////////////////////////////////////////////////////////////
// create tx dsp control objects
////////////////////////////////////////////////////////////////
_mbc[mb].tx_dsp = tx_dsp_core_200::make(_mbc[mb].wbiface,
U2_REG_SR_ADDR(SR_TX_DSP),
U2_REG_SR_ADDR(SR_TX_CTRL),
USRP2_TX_ASYNC_SID);
_mbc[mb].tx_dsp->set_link_rate(USRP2_LINK_RATE_BPS);
{ // This scope can be removed once we're able to do named captures
auto this_tx_dsp = _mbc[mb].tx_dsp; // This can then also go away
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber([this_tx_dsp](const double rate) {
this_tx_dsp->set_tick_rate(rate);
});
_tree->create<meta_range_t>(mb_path / "tx_dsps/0/rate/range")
.set_publisher([this_tx_dsp]() { return this_tx_dsp->get_host_rates(); });
_tree->create<double>(mb_path / "tx_dsps/0/rate/value")
.set(1e6) // some default
.set_coercer([this_tx_dsp](const double rate) {
return this_tx_dsp->set_host_rate(rate);
})
.add_coerced_subscriber([this, mb](const double rate) {
this->update_tx_samp_rate(mb, 0, rate);
});
} // End of non-C++14 scope (to release reference to this_tx_dsp)
_tree->create<double>(mb_path / "tx_dsps/0/freq/value")
.set_coercer([this, mb](const double rate) {
return this->set_tx_dsp_freq(mb, rate);
});
_tree->create<meta_range_t>(mb_path / "tx_dsps/0/freq/range")
.set_publisher([this, mb]() { return this->get_tx_dsp_freq_range(mb); });
// setup dsp flow control
const double ups_per_sec = device_args_i.cast<double>("ups_per_sec", 20);
const size_t send_frame_size = _mbc[mb].tx_dsp_xport->get_send_frame_size();
const double ups_per_fifo = device_args_i.cast<double>("ups_per_fifo", 8.0);
_mbc[mb].tx_dsp->set_updates(
(ups_per_sec > 0.0) ? size_t(100e6 /*approx tick rate*/ / ups_per_sec) : 0,
(ups_per_fifo > 0.0)
? size_t(USRP2_SRAM_BYTES / ups_per_fifo / send_frame_size)
: 0);
////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////
time64_core_200::readback_bases_type time64_rb_bases;
time64_rb_bases.rb_hi_now = U2_REG_TIME64_HI_RB_IMM;
time64_rb_bases.rb_lo_now = U2_REG_TIME64_LO_RB_IMM;
time64_rb_bases.rb_hi_pps = U2_REG_TIME64_HI_RB_PPS;
time64_rb_bases.rb_lo_pps = U2_REG_TIME64_LO_RB_PPS;
_mbc[mb].time64 = time64_core_200::make(_mbc[mb].wbiface,
U2_REG_SR_ADDR(SR_TIME64),
time64_rb_bases,
mimo_clock_sync_delay_cycles);
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(
&time64_core_200::set_tick_rate, _mbc[mb].time64, std::placeholders::_1));
_tree->create<time_spec_t>(mb_path / "time/now")
.set_publisher(std::bind(&time64_core_200::get_time_now, _mbc[mb].time64))
.add_coerced_subscriber(std::bind(
&time64_core_200::set_time_now, _mbc[mb].time64, std::placeholders::_1));
_tree->create<time_spec_t>(mb_path / "time/pps")
.set_publisher(
std::bind(&time64_core_200::get_time_last_pps, _mbc[mb].time64))
.add_coerced_subscriber(std::bind(&time64_core_200::set_time_next_pps,
_mbc[mb].time64,
std::placeholders::_1));
// setup time source props
_tree->create<std::string>(mb_path / "time_source/value")
.add_coerced_subscriber(std::bind(&time64_core_200::set_time_source,
_mbc[mb].time64,
std::placeholders::_1))
.set("none");
_tree->create<std::vector<std::string>>(mb_path / "time_source/options")
.set_publisher(
std::bind(&time64_core_200::get_time_sources, _mbc[mb].time64));
// setup reference source props
_tree->create<std::string>(mb_path / "clock_source/value")
.add_coerced_subscriber(std::bind(
&usrp2_impl::update_clock_source, this, mb, std::placeholders::_1))
.set("internal");
std::vector<std::string> clock_sources{"internal", "external", "mimo"};
if (_mbc[mb].gps and _mbc[mb].gps->gps_detected()) {
clock_sources.push_back("gpsdo");
}
_tree->create<std::vector<std::string>>(mb_path / "clock_source/options")
.set(clock_sources);
// plug timed commands into tree here
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
_tree->create<time_spec_t>(mb_path / "time/cmd")
.add_coerced_subscriber(std::bind(&usrp2_fifo_ctrl::set_time,
_mbc[mb].fifo_ctrl,
std::placeholders::_1));
default:
break; // otherwise, do not register
}
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(&usrp2_fifo_ctrl::set_tick_rate,
_mbc[mb].fifo_ctrl,
std::placeholders::_1));
////////////////////////////////////////////////////////////////////
// create user-defined control objects
////////////////////////////////////////////////////////////////////
_mbc[mb].user =
user_settings_core_200::make(_mbc[mb].wbiface, U2_REG_SR_ADDR(SR_USER_REGS));
_tree->create<user_settings_core_200::user_reg_t>(mb_path / "user/regs")
.add_coerced_subscriber(std::bind(
&user_settings_core_200::set_reg, _mbc[mb].user, std::placeholders::_1));
////////////////////////////////////////////////////////////////
// create dboard control objects
////////////////////////////////////////////////////////////////
// read the dboard eeprom to extract the dboard ids
dboard_eeprom_t rx_db_eeprom, tx_db_eeprom, gdb_eeprom;
rx_db_eeprom.load(*_mbc[mb].iface, USRP2_I2C_ADDR_RX_DB);
tx_db_eeprom.load(*_mbc[mb].iface, USRP2_I2C_ADDR_TX_DB);
gdb_eeprom.load(*_mbc[mb].iface, USRP2_I2C_ADDR_TX_DB ^ 5);
// disable rx dc offset if LFRX
if (rx_db_eeprom.id == 0x000f)
_tree->access<bool>(rx_fe_path / "dc_offset" / "enable").set(false);
// create the properties and register subscribers
_tree->create<dboard_eeprom_t>(mb_path / "dboards/A/rx_eeprom")
.set(rx_db_eeprom)
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_db_eeprom, this, mb, "rx", std::placeholders::_1));
_tree->create<dboard_eeprom_t>(mb_path / "dboards/A/tx_eeprom")
.set(tx_db_eeprom)
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_db_eeprom, this, mb, "tx", std::placeholders::_1));
_tree->create<dboard_eeprom_t>(mb_path / "dboards/A/gdb_eeprom")
.set(gdb_eeprom)
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_db_eeprom, this, mb, "gdb", std::placeholders::_1));
// create a new dboard interface and manager
_mbc[mb].dboard_manager = dboard_manager::make(rx_db_eeprom,
tx_db_eeprom,
gdb_eeprom,
make_usrp2_dboard_iface(_mbc[mb].wbiface,
_mbc[mb].iface /*i2c*/,
_mbc[mb].spiface,
_mbc[mb].clock),
_tree->subtree(mb_path / "dboards/A"));
// bind frontend corrections to the dboard freq props
const fs_path db_tx_fe_path = mb_path / "dboards" / "A" / "tx_frontends";
for (const std::string& name : _tree->list(db_tx_fe_path)) {
_tree->access<double>(db_tx_fe_path / name / "freq" / "value")
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_tx_fe_corrections, this, mb, std::placeholders::_1));
}
const fs_path db_rx_fe_path = mb_path / "dboards" / "A" / "rx_frontends";
for (const std::string& name : _tree->list(db_rx_fe_path)) {
_tree->access<double>(db_rx_fe_path / name / "freq" / "value")
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_rx_fe_corrections, this, mb, std::placeholders::_1));
}
}
// initialize io handling
this->io_init();
// do some post-init tasks
this->update_rates();
for (const std::string& mb : _mbc.keys()) {
fs_path root = "/mboards/" + mb;
// reset cordic rates and their properties to zero
for (const std::string& name : _tree->list(root / "rx_dsps")) {
_tree->access<double>(root / "rx_dsps" / name / "freq" / "value").set(0.0);
}
for (const std::string& name : _tree->list(root / "tx_dsps")) {
_tree->access<double>(root / "tx_dsps" / name / "freq" / "value").set(0.0);
}
_tree->access<subdev_spec_t>(root / "rx_subdev_spec")
.set(
subdev_spec_t("A:" + _tree->list(root / "dboards/A/rx_frontends").at(0)));
_tree->access<subdev_spec_t>(root / "tx_subdev_spec")
.set(
subdev_spec_t("A:" + _tree->list(root / "dboards/A/tx_frontends").at(0)));
_tree->access<std::string>(root / "clock_source/value").set("internal");
_tree->access<std::string>(root / "time_source/value").set("none");
// GPS installed: use external ref, time, and init time spec
if (_mbc[mb].gps and _mbc[mb].gps->gps_detected()) {
_mbc[mb].time64->enable_gpsdo();
UHD_LOGGER_INFO("USRP2") << "Setting references to the internal GPSDO";
_tree->access<std::string>(root / "time_source/value").set("gpsdo");
_tree->access<std::string>(root / "clock_source/value").set("gpsdo");
}
}
}
usrp2_impl::~usrp2_impl(void)
{
UHD_SAFE_CALL(_pirate_task_exit = true;
for (const std::string& mb
: _mbc.keys()) { _mbc[mb].tx_dsp->set_updates(0, 0); })
}
void usrp2_impl::set_db_eeprom(const std::string& mb,
const std::string& type,
const uhd::usrp::dboard_eeprom_t& db_eeprom)
{
if (type == "rx")
db_eeprom.store(*_mbc[mb].iface, USRP2_I2C_ADDR_RX_DB);
if (type == "tx")
db_eeprom.store(*_mbc[mb].iface, USRP2_I2C_ADDR_TX_DB);
if (type == "gdb")
db_eeprom.store(*_mbc[mb].iface, USRP2_I2C_ADDR_TX_DB ^ 5);
}
sensor_value_t usrp2_impl::get_mimo_locked(const std::string& mb)
{
const bool lock = (_mbc[mb].wbiface->peek32(U2_REG_IRQ_RB) & (1 << 10)) != 0;
return sensor_value_t("MIMO", lock, "locked", "unlocked");
}
sensor_value_t usrp2_impl::get_ref_locked(const std::string& mb)
{
const bool lock = (_mbc[mb].wbiface->peek32(U2_REG_IRQ_RB) & (1 << 11)) != 0;
return sensor_value_t("Ref", lock, "locked", "unlocked");
}
void usrp2_impl::set_rx_fe_corrections(const std::string& mb, const double lo_freq)
{
if (not _ignore_cal_file) {
apply_rx_fe_corrections(
this->get_tree()->subtree("/mboards/" + mb), "A", lo_freq);
}
}
void usrp2_impl::set_tx_fe_corrections(const std::string& mb, const double lo_freq)
{
if (not _ignore_cal_file) {
apply_tx_fe_corrections(
this->get_tree()->subtree("/mboards/" + mb), "A", lo_freq);
}
}
double usrp2_impl::set_tx_dsp_freq(const std::string& mb, const double freq_)
{
double new_freq = freq_;
const double tick_rate = _tree->access<double>("/mboards/" + mb + "/tick_rate").get();
// calculate the DAC shift (multiples of rate)
const int zone = std::max(std::min<int>(std::lround(new_freq / tick_rate), 2), -2);
const double dac_shift = zone * tick_rate;
new_freq -= dac_shift; // update FPGA DSP target freq
UHD_LOG_TRACE("USRP2",
"DSP Tuning: Requested " + std::to_string(freq_ / 1e6)
+ " MHz, Using "
"Nyquist zone "
+ std::to_string(zone)
+ ", leftover DSP tuning: " + std::to_string(new_freq / 1e6) + " MHz.");
// set the DAC shift (modulation mode)
if (zone == 0) {
_mbc[mb].codec->set_tx_mod_mode(0); // no shift
} else {
_mbc[mb].codec->set_tx_mod_mode(4 / zone); // DAC interp = 4
}
return _mbc[mb].tx_dsp->set_freq(new_freq) + dac_shift; // actual freq
}
meta_range_t usrp2_impl::get_tx_dsp_freq_range(const std::string& mb)
{
const double dac_rate = _tree->access<double>("/mboards/" + mb + "/tick_rate").get()
* _mbc[mb].codec->get_tx_interpolation();
const auto dsp_range_step = _mbc[mb].tx_dsp->get_freq_range().step();
// The DSP tuning rate is the entire range of the DAC clock rate. The step
// size is determined by the FPGA IP, however.
return meta_range_t(-dac_rate / 2, +dac_rate / 2, dsp_range_step);
}
#include <boost/math/special_functions/round.hpp>
#include <boost/math/special_functions/sign.hpp>
void usrp2_impl::update_clock_source(const std::string& mb, const std::string& source)
{
// NOTICE: U2_REG_MISC_CTRL_CLOCK is on the wb clock, and cannot be set from fifo_ctrl
// clock source ref 10mhz
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
if (source == "internal")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x12);
else if (source == "external")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x1C);
else if (source == "gpsdo")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x1C);
else if (source == "mimo")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x15);
else
throw uhd::value_error(
"unhandled clock configuration reference source: " + source);
_mbc[mb].clock->enable_external_ref(true); // USRP2P has an internal 10MHz
// TCXO
break;
case usrp2_iface::USRP2_REV3:
case usrp2_iface::USRP2_REV4:
if (source == "internal")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x10);
else if (source == "external")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x1C);
else if (source == "mimo")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x15);
else
throw uhd::value_error(
"unhandled clock configuration reference source: " + source);
_mbc[mb].clock->enable_external_ref(source != "internal");
break;
case usrp2_iface::USRP_NXXX:
break;
}
// always drive the clock over serdes if not locking to it
_mbc[mb].clock->enable_mimo_clock_out(source != "mimo");
// set the mimo clock delay over the serdes
if (source != "mimo") {
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
_mbc[mb].clock->set_mimo_clock_delay(mimo_clock_delay_usrp_n2xx);
break;
case usrp2_iface::USRP2_REV4:
_mbc[mb].clock->set_mimo_clock_delay(mimo_clock_delay_usrp2_rev4);
break;
default:
break; // not handled
}
}
}
|