1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "../dboard/db_basic_and_lf.hpp"
#include "x300_adc_ctrl.hpp"
#include "x300_dac_ctrl.hpp"
#include "x300_dboard_iface.hpp"
#include "x300_device_args.hpp"
#include "x300_mb_controller.hpp"
#include "x300_radio_mbc_iface.hpp"
#include "x300_regs.hpp"
#include <uhd/rfnoc/registry.hpp>
#include <uhd/types/direction.hpp>
#include <uhd/types/wb_iface.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <uhd/usrp/dboard_manager.hpp>
#include <uhd/utils/gain_group.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/utils/soft_register.hpp>
#include <uhdlib/rfnoc/radio_control_impl.hpp>
#include <uhdlib/rfnoc/reg_iface_adapter.hpp>
#include <uhdlib/usrp/common/apply_corrections.hpp>
#include <uhdlib/usrp/cores/gpio_atr_3000.hpp>
#include <uhdlib/usrp/cores/rx_frontend_core_3000.hpp>
#include <uhdlib/usrp/cores/spi_core_3000.hpp>
#include <uhdlib/usrp/cores/tx_frontend_core_200.hpp>
#include <boost/algorithm/string.hpp>
#include <algorithm>
#include <chrono>
#include <functional>
#include <iostream>
#include <memory>
#include <thread>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
namespace {
std::vector<uint8_t> str_to_bytes(std::string str)
{
return std::vector<uint8_t>(str.cbegin(), str.cend());
}
std::string bytes_to_str(std::vector<uint8_t> str_b)
{
return std::string(str_b.cbegin(), str_b.cend());
}
gain_fcns_t make_gain_fcns_from_subtree(property_tree::sptr subtree)
{
gain_fcns_t gain_fcns;
gain_fcns.get_range = [subtree]() {
return subtree->access<meta_range_t>("range").get();
};
gain_fcns.get_value = [subtree]() { return subtree->access<double>("value").get(); };
gain_fcns.set_value = [subtree](const double gain) {
subtree->access<double>("value").set(gain);
};
return gain_fcns;
}
template <typename map_type>
size_t _get_chan_from_map(std::unordered_map<size_t, map_type> map, const std::string& fe)
{
for (auto it = map.begin(); it != map.end(); ++it) {
if (it->second.db_fe_name == fe) {
return it->first;
}
}
throw uhd::lookup_error(
str(boost::format("Invalid daughterboard frontend name: %s") % fe));
}
constexpr double DEFAULT_RATE = 200e6;
constexpr char HW_GAIN_STAGE[] = "hw";
} // namespace
namespace x300_regs {
static constexpr uint32_t PERIPH_BASE = 0x80000;
static constexpr uint32_t PERIPH_REG_OFFSET = 8;
// db_control registers
static constexpr uint32_t SR_MISC_OUTS = PERIPH_BASE + 160 * PERIPH_REG_OFFSET;
static constexpr uint32_t SR_SPI = PERIPH_BASE + 168 * PERIPH_REG_OFFSET;
static constexpr uint32_t SR_LEDS = PERIPH_BASE + 176 * PERIPH_REG_OFFSET;
static constexpr uint32_t SR_FP_GPIO = PERIPH_BASE + 184 * PERIPH_REG_OFFSET;
static constexpr uint32_t SR_DB_GPIO = PERIPH_BASE + 192 * PERIPH_REG_OFFSET;
// LED bit positions
// Green LED on TX/RX port (left SMA)
static constexpr int SR_LED_TXRX_RX = (1 << 0);
// Red LED on TX/RX port (left SMA)
static constexpr int SR_LED_TXRX_TX = (1 << 1);
// Green LED on RX2 port (right SMA)
static constexpr int SR_LED_RX2_RX = (1 << 2);
static constexpr uint32_t RB_MISC_IO = PERIPH_BASE + 16 * PERIPH_REG_OFFSET;
static constexpr uint32_t RB_SPI = PERIPH_BASE + 17 * PERIPH_REG_OFFSET;
// static constexpr uint32_t RB_LEDS = PERIPH_BASE + 18 * PERIPH_REG_OFFSET;
static constexpr uint32_t RB_DB_GPIO = PERIPH_BASE + 19 * PERIPH_REG_OFFSET;
static constexpr uint32_t RB_FP_GPIO = PERIPH_BASE + 20 * PERIPH_REG_OFFSET;
//! Delta between frontend offsets for channel 0 and 1
constexpr uint32_t SR_FE_CHAN_OFFSET = 16 * PERIPH_REG_OFFSET;
constexpr uint32_t SR_TX_FE_BASE = PERIPH_BASE + 208 * PERIPH_REG_OFFSET;
constexpr uint32_t SR_RX_FE_BASE = PERIPH_BASE + 224 * PERIPH_REG_OFFSET;
} // namespace x300_regs
class x300_radio_control_impl : public radio_control_impl,
public uhd::usrp::x300::x300_radio_mbc_iface
{
public:
RFNOC_RADIO_CONSTRUCTOR(x300_radio_control)
, _radio_type(get_block_id().get_block_count() == 0 ? PRIMARY : SECONDARY)
{
RFNOC_LOG_TRACE("Initializing x300_radio_control, slot "
<< x300_radio_control_impl::get_slot_name());
UHD_ASSERT_THROW(get_mb_controller());
_x300_mb_control =
std::dynamic_pointer_cast<x300_mb_controller>(get_mb_controller());
UHD_ASSERT_THROW(_x300_mb_control);
_x300_mb_control->register_radio(this);
// MCR is locked for this session
_master_clock_rate = _x300_mb_control->get_clock_ctrl()->get_master_clock_rate();
UHD_ASSERT_THROW(get_tick_rate() == _master_clock_rate);
radio_control_impl::set_rate(_master_clock_rate);
////////////////////////////////////////////////////////////////
// Setup peripherals
////////////////////////////////////////////////////////////////
// The X300 only requires a single timed_wb_iface, even for TwinRX
_wb_iface = RFNOC_MAKE_WB_IFACE(0, 0);
RFNOC_LOG_TRACE("Creating SPI interface...");
_spi = spi_core_3000::make(
[this](const uint32_t addr, const uint32_t data) {
regs().poke32(addr, data, get_command_time(0));
},
[this](
const uint32_t addr) { return regs().peek32(addr, get_command_time(0)); },
x300_regs::SR_SPI,
8,
x300_regs::RB_SPI);
// DAC/ADC
RFNOC_LOG_TRACE("Running init_codec...");
// Note: ADC calibration and DAC sync happen in x300_mb_controller
_init_codecs();
_x300_mb_control->register_reset_codec_cb([this]() { this->reset_codec(); });
// FP-GPIO (the gpio_atr_3000 ctor will initialize default values)
RFNOC_LOG_TRACE("Creating FP-GPIO interface...");
_fp_gpio = gpio_atr::gpio_atr_3000::make(_wb_iface,
gpio_atr::gpio_atr_offsets::make_default(x300_regs::SR_FP_GPIO,
x300_regs::RB_FP_GPIO,
x300_regs::PERIPH_REG_OFFSET));
// Create the GPIO banks and attributes, and populate them with some default
// values
// TODO: Do we need this section? Since the _fp_gpio handles state now, we
// don't need to stash values here. We only need this if we want to set
// anything to a default value.
for (const auto& attr : gpio_atr::gpio_attr_map) {
// TODO: Default values?
if (attr.first == usrp::gpio_atr::GPIO_SRC) {
// Don't set the SRC
// TODO: Remove from the map??
continue;
}
set_gpio_attr("FP0", usrp::gpio_atr::gpio_attr_map.at(attr.first), 0);
}
// DB Initialization
_init_db(); // This does not init the dboards themselves!
// LEDs are technically valid for both RX and TX, but let's put them
// here
_leds = gpio_atr::gpio_atr_3000::make(_wb_iface,
gpio_atr::gpio_atr_offsets::make_write_only(
x300_regs::SR_LEDS, x300_regs::PERIPH_REG_OFFSET));
_leds->set_atr_mode(
usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
// Set LEDs to default setting: RX2 LED on RX, TX/RX red LED on TX. The
// actual setting depends on the antenna choice and is handled in
// _update_atr_leds().
_leds->set_atr_reg(gpio_atr::ATR_REG_IDLE, 0);
_leds->set_atr_reg(gpio_atr::ATR_REG_RX_ONLY, x300_regs::SR_LED_RX2_RX);
_leds->set_atr_reg(gpio_atr::ATR_REG_TX_ONLY, x300_regs::SR_LED_TXRX_TX);
// We choose to light both LEDs on full duplex, regardless of the
// antenna selection, because the single multi-color LED on the TX/RX
// side does not provide useful visual feedback by itself.
_leds->set_atr_reg(gpio_atr::ATR_REG_FULL_DUPLEX,
x300_regs::SR_LED_RX2_RX | x300_regs::SR_LED_TXRX_TX);
// We always want to initialize at least one frontend core for both TX and RX
// RX periphs
for (size_t i = 0; i < std::max<size_t>(get_num_output_ports(), 1); i++) {
_rx_fe_map[i].core = rx_frontend_core_3000::make(_wb_iface,
x300_regs::SR_RX_FE_BASE + i * x300_regs::SR_FE_CHAN_OFFSET,
x300_regs::PERIPH_REG_OFFSET);
_rx_fe_map[i].core->set_adc_rate(
_x300_mb_control->get_clock_ctrl()->get_master_clock_rate());
_rx_fe_map[i].core->set_dc_offset(
rx_frontend_core_3000::DEFAULT_DC_OFFSET_VALUE);
_rx_fe_map[i].core->set_dc_offset_auto(
rx_frontend_core_3000::DEFAULT_DC_OFFSET_ENABLE);
_rx_fe_map[i].core->populate_subtree(
get_tree()->subtree(FE_PATH / "rx_fe_corrections" / i));
}
// TX Periphs
for (size_t i = 0; i < std::max<size_t>(get_num_input_ports(), 1); i++) {
_tx_fe_map[i].core = tx_frontend_core_200::make(_wb_iface,
x300_regs::SR_TX_FE_BASE + i * x300_regs::SR_FE_CHAN_OFFSET,
x300_regs::PERIPH_REG_OFFSET);
_tx_fe_map[i].core->set_dc_offset(
tx_frontend_core_200::DEFAULT_DC_OFFSET_VALUE);
_tx_fe_map[i].core->set_iq_balance(
tx_frontend_core_200::DEFAULT_IQ_BALANCE_VALUE);
_tx_fe_map[i].core->populate_subtree(
get_tree()->subtree(FE_PATH / "tx_fe_corrections" / i));
}
// Dboards
_init_dboards();
// Properties
for (auto& samp_rate_prop : _samp_rate_in) {
set_property(
samp_rate_prop.get_id(), get_rate(), samp_rate_prop.get_src_info());
}
for (auto& samp_rate_prop : _samp_rate_out) {
set_property(
samp_rate_prop.get_id(), get_rate(), samp_rate_prop.get_src_info());
}
} /* ctor */
~x300_radio_control_impl() override
{
// nop
}
/**************************************************************************
* Radio API calls
*************************************************************************/
double set_rate(double rate) override
{
// On X3x0, tick rate can't actually be changed at runtime
const double actual_rate = get_rate();
if (not uhd::math::frequencies_are_equal(rate, actual_rate)) {
RFNOC_LOG_WARNING("Requesting invalid sampling rate from device: "
<< (rate / 1e6) << " MHz. Actual rate is: "
<< (actual_rate / 1e6) << " MHz.");
}
return actual_rate;
}
void set_tx_antenna(const std::string& ant, const size_t chan) override
{
// Antenna changes may result in a change of streaming mode for LF/Basic dboards
if (_basic_lf_tx) {
if (not uhd::usrp::dboard::basic_and_lf::antenna_mode_to_conn.has_key(ant)) {
throw uhd::lookup_error(
str(boost::format("Invalid antenna mode: %s") % ant));
}
const std::string connection =
uhd::usrp::dboard::basic_and_lf::antenna_mode_to_conn[ant];
_tx_fe_map[chan].core->set_mux(connection);
}
get_tree()
->access<std::string>(get_db_path("tx", chan) / "antenna" / "value")
.set(ant);
}
std::string get_tx_antenna(const size_t chan) const override
{
return get_tree()
->access<std::string>(get_db_path("tx", chan) / "antenna" / "value")
.get();
}
std::vector<std::string> get_tx_antennas(size_t chan) const override
{
return get_tree()
->access<std::vector<std::string>>(
get_db_path("tx", chan) / "antenna" / "options")
.get();
}
void set_rx_antenna(const std::string& ant, const size_t chan) override
{
// Antenna changes may result in a change of streaming mode for LF/Basic dboards
if (_basic_lf_rx) {
if (not uhd::usrp::dboard::basic_and_lf::antenna_mode_to_conn.has_key(ant)) {
throw uhd::lookup_error(
str(boost::format("Invalid antenna mode: %s") % ant));
}
const std::string connection =
uhd::usrp::dboard::basic_and_lf::antenna_mode_to_conn[ant];
const double if_freq = 0.0;
_rx_fe_map[chan].core->set_fe_connection(
usrp::fe_connection_t(connection, if_freq));
}
get_tree()
->access<std::string>(get_db_path("rx", chan) / "antenna" / "value")
.set(ant);
}
std::string get_rx_antenna(const size_t chan) const override
{
return get_tree()
->access<std::string>(get_db_path("rx", chan) / "antenna" / "value")
.get();
}
std::vector<std::string> get_rx_antennas(size_t chan) const override
{
return get_tree()
->access<std::vector<std::string>>(
get_db_path("rx", chan) / "antenna" / "options")
.get();
}
double set_tx_frequency(const double freq, const size_t chan) override
{
return get_tree()
->access<double>(get_db_path("tx", chan) / "freq" / "value")
.set(freq)
.get();
}
void set_tx_tune_args(const uhd::device_addr_t& tune_args, const size_t chan) override
{
if (get_tree()->exists(get_db_path("tx", chan) / "tune_args")) {
get_tree()
->access<uhd::device_addr_t>(get_db_path("tx", chan) / "tune_args")
.set(tune_args);
}
}
double get_tx_frequency(const size_t chan) override
{
return get_tree()
->access<double>(get_db_path("tx", chan) / "freq" / "value")
.get();
}
double set_rx_frequency(const double freq, const size_t chan) override
{
RFNOC_LOG_TRACE(
"set_rx_frequency(freq=" << (freq / 1e6) << " MHz, chan=" << chan << ")");
return get_tree()
->access<double>(get_db_path("rx", chan) / "freq" / "value")
.set(freq)
.get();
}
void set_rx_tune_args(const uhd::device_addr_t& tune_args, const size_t chan) override
{
if (get_tree()->exists(get_db_path("rx", chan) / "tune_args")) {
get_tree()
->access<uhd::device_addr_t>(get_db_path("rx", chan) / "tune_args")
.set(tune_args);
}
}
double get_rx_frequency(const size_t chan) override
{
return get_tree()
->access<double>(get_db_path("rx", chan) / "freq" / "value")
.get();
}
uhd::freq_range_t get_tx_frequency_range(const size_t chan) const override
{
return get_tree()
->access<uhd::freq_range_t>(get_db_path("tx", chan) / "freq" / "range")
.get();
}
uhd::freq_range_t get_rx_frequency_range(const size_t chan) const override
{
return get_tree()
->access<uhd::meta_range_t>(get_db_path("rx", chan) / "freq" / "range")
.get();
}
/*** Bandwidth-Related APIs************************************************/
double set_rx_bandwidth(const double bandwidth, const size_t chan) override
{
return get_tree()
->access<double>(get_db_path("rx", chan) / "bandwidth" / "value")
.set(bandwidth)
.get();
}
double get_rx_bandwidth(const size_t chan) override
{
return get_tree()
->access<double>(get_db_path("rx", chan) / "bandwidth" / "value")
.get();
}
uhd::meta_range_t get_rx_bandwidth_range(size_t chan) const override
{
return get_tree()
->access<uhd::meta_range_t>(get_db_path("rx", chan) / "bandwidth" / "range")
.get();
}
double set_tx_bandwidth(const double bandwidth, const size_t chan) override
{
return get_tree()
->access<double>(get_db_path("tx", chan) / "bandwidth" / "value")
.set(bandwidth)
.get();
}
double get_tx_bandwidth(const size_t chan) override
{
return get_tree()
->access<double>(get_db_path("tx", chan) / "bandwidth" / "value")
.get();
}
uhd::meta_range_t get_tx_bandwidth_range(size_t chan) const override
{
return get_tree()
->access<uhd::meta_range_t>(get_db_path("tx", chan) / "bandwidth" / "range")
.get();
}
/*** Gain-Related APIs ***************************************************/
double set_tx_gain(const double gain, const size_t chan) override
{
return set_tx_gain(gain, ALL_GAINS, chan);
}
double set_tx_gain(
const double gain, const std::string& name, const size_t chan) override
{
_tx_pwr_mgr.at(chan)->set_tracking_mode(pwr_cal_mgr::tracking_mode::TRACK_GAIN);
if (_tx_gain_groups.count(chan)) {
auto& gg = _tx_gain_groups.at(chan);
gg->set_value(gain, name);
return radio_control_impl::set_tx_gain(gg->get_value(name), chan);
}
return radio_control_impl::set_tx_gain(0.0, chan);
}
double set_rx_gain(const double gain, const size_t chan) override
{
return set_rx_gain(gain, ALL_GAINS, chan);
}
double set_rx_gain(
const double gain, const std::string& name, const size_t chan) override
{
_rx_pwr_mgr.at(chan)->set_tracking_mode(pwr_cal_mgr::tracking_mode::TRACK_GAIN);
auto& gg = _rx_gain_groups.at(chan);
gg->set_value(gain, name);
return radio_control_impl::set_rx_gain(gg->get_value(name), chan);
}
double get_rx_gain(const size_t chan) override
{
return get_rx_gain(ALL_GAINS, chan);
}
double get_rx_gain(const std::string& name, const size_t chan) override
{
return _rx_gain_groups.at(chan)->get_value(name);
}
double get_tx_gain(const size_t chan) override
{
return get_tx_gain(ALL_GAINS, chan);
}
double get_tx_gain(const std::string& name, const size_t chan) override
{
return _tx_gain_groups.at(chan)->get_value(name);
}
std::vector<std::string> get_tx_gain_names(const size_t chan) const override
{
return _tx_gain_groups.at(chan)->get_names();
}
std::vector<std::string> get_rx_gain_names(const size_t chan) const override
{
return _rx_gain_groups.at(chan)->get_names();
}
uhd::gain_range_t get_tx_gain_range(const size_t chan) const override
{
return get_tx_gain_range(ALL_GAINS, chan);
}
uhd::gain_range_t get_tx_gain_range(
const std::string& name, const size_t chan) const override
{
if (!_tx_gain_groups.count(chan)) {
throw uhd::index_error(
"Trying to access invalid TX gain group: " + std::to_string(chan));
}
return _tx_gain_groups.at(chan)->get_range(name);
}
uhd::gain_range_t get_rx_gain_range(const size_t chan) const override
{
return get_rx_gain_range(ALL_GAINS, chan);
}
uhd::gain_range_t get_rx_gain_range(
const std::string& name, const size_t chan) const override
{
if (!_rx_gain_groups.count(chan)) {
throw uhd::index_error(
"Trying to access invalid RX gain group: " + std::to_string(chan));
}
return _rx_gain_groups.at(chan)->get_range(name);
}
std::vector<std::string> get_tx_gain_profile_names(const size_t chan) const override
{
return get_tree()
->access<std::vector<std::string>>(
get_db_path("tx", chan) / "gains/all/profile/options")
.get();
}
std::vector<std::string> get_rx_gain_profile_names(const size_t chan) const override
{
return get_tree()
->access<std::vector<std::string>>(
get_db_path("rx", chan) / "gains/all/profile/options")
.get();
}
void set_tx_gain_profile(const std::string& profile, const size_t chan) override
{
get_tree()
->access<std::string>(get_db_path("tx", chan) / "gains/all/profile/value")
.set(profile);
}
void set_rx_gain_profile(const std::string& profile, const size_t chan) override
{
get_tree()
->access<std::string>(get_db_path("rx", chan) / "gains/all/profile/value")
.set(profile);
}
std::string get_tx_gain_profile(const size_t chan) const override
{
return get_tree()
->access<std::string>(get_db_path("tx", chan) / "gains/all/profile/value")
.get();
}
std::string get_rx_gain_profile(const size_t chan) const override
{
return get_tree()
->access<std::string>(get_db_path("rx", chan) / "gains/all/profile/value")
.get();
}
/**************************************************************************
* LO controls
*************************************************************************/
std::vector<std::string> get_rx_lo_names(const size_t chan) const override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
std::vector<std::string> lo_names;
if (get_tree()->exists(rx_fe_fe_root / "los")) {
for (const std::string& name : get_tree()->list(rx_fe_fe_root / "los")) {
lo_names.push_back(name);
}
}
return lo_names;
}
std::vector<std::string> get_rx_lo_sources(
const std::string& name, const size_t chan) const override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
if (get_tree()->exists(rx_fe_fe_root / "los")) {
if (name == ALL_LOS) {
if (get_tree()->exists(rx_fe_fe_root / "los" / ALL_LOS)) {
// Special value ALL_LOS support atomically sets the source for all
// LOs
return get_tree()
->access<std::vector<std::string>>(
rx_fe_fe_root / "los" / ALL_LOS / "source" / "options")
.get();
} else {
return std::vector<std::string>();
}
} else {
if (get_tree()->exists(rx_fe_fe_root / "los")) {
return get_tree()
->access<std::vector<std::string>>(
rx_fe_fe_root / "los" / name / "source" / "options")
.get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// If the daughterboard doesn't expose it's LO(s) then it can only be internal
return std::vector<std::string>(1, "internal");
}
}
void set_rx_lo_source(
const std::string& src, const std::string& name, const size_t chan) override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
if (get_tree()->exists(rx_fe_fe_root / "los")) {
if (name == ALL_LOS) {
if (get_tree()->exists(rx_fe_fe_root / "los" / ALL_LOS)) {
// Special value ALL_LOS support atomically sets the source for all
// LOs
get_tree()
->access<std::string>(
rx_fe_fe_root / "los" / ALL_LOS / "source" / "value")
.set(src);
} else {
for (const std::string& n : get_tree()->list(rx_fe_fe_root / "los")) {
this->set_rx_lo_source(src, n, chan);
}
}
} else {
if (get_tree()->exists(rx_fe_fe_root / "los")) {
get_tree()
->access<std::string>(
rx_fe_fe_root / "los" / name / "source" / "value")
.set(src);
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
if (not(src == "internal" and name == ALL_LOS)) {
throw uhd::runtime_error(
"This device only supports setting internal source on all LOs");
}
}
}
const std::string get_rx_lo_source(
const std::string& name, const size_t chan) override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
if (get_tree()->exists(rx_fe_fe_root / "los")) {
if (name == ALL_LOS) {
// Special value ALL_LOS support atomically sets the source for all LOs
return get_tree()
->access<std::string>(
rx_fe_fe_root / "los" / ALL_LOS / "source" / "value")
.get();
} else {
if (get_tree()->exists(rx_fe_fe_root / "los")) {
return get_tree()
->access<std::string>(
rx_fe_fe_root / "los" / name / "source" / "value")
.get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// If the daughterboard doesn't expose it's LO(s) then it can only be internal
return "internal";
}
}
void set_rx_lo_export_enabled(
bool enabled, const std::string& name, const size_t chan) override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
if (get_tree()->exists(rx_fe_fe_root / "los")) {
if (name == ALL_LOS) {
if (get_tree()->exists(rx_fe_fe_root / "los" / ALL_LOS)) {
// Special value ALL_LOS support atomically sets the source for all
// LOs
get_tree()
->access<bool>(rx_fe_fe_root / "los" / ALL_LOS / "export")
.set(enabled);
} else {
for (const std::string& n : get_tree()->list(rx_fe_fe_root / "los")) {
this->set_rx_lo_export_enabled(enabled, n, chan);
}
}
} else {
if (get_tree()->exists(rx_fe_fe_root / "los")) {
get_tree()
->access<bool>(rx_fe_fe_root / "los" / name / "export")
.set(enabled);
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
if (not(enabled == false and name == ALL_LOS)) {
throw uhd::runtime_error("This device only supports setting LO export "
"enabled to false on all LOs");
}
}
}
bool get_rx_lo_export_enabled(const std::string& name, const size_t chan) override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
if (get_tree()->exists(rx_fe_fe_root / "los")) {
if (name == ALL_LOS) {
// Special value ALL_LOS support atomically sets the source for all LOs
return get_tree()
->access<bool>(rx_fe_fe_root / "los" / ALL_LOS / "export")
.get();
} else {
if (get_tree()->exists(rx_fe_fe_root / "los")) {
return get_tree()
->access<bool>(rx_fe_fe_root / "los" / name / "export")
.get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// If the daughterboard doesn't expose it's LO(s), assume it cannot export
return false;
}
}
double set_rx_lo_freq(
double freq, const std::string& name, const size_t chan) override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
if (get_tree()->exists(rx_fe_fe_root / "los")) {
if (name == ALL_LOS) {
throw uhd::runtime_error(
"LO frequency must be set for each stage individually");
} else {
if (get_tree()->exists(rx_fe_fe_root / "los")) {
get_tree()
->access<double>(rx_fe_fe_root / "los" / name / "freq" / "value")
.set(freq);
return get_tree()
->access<double>(rx_fe_fe_root / "los" / name / "freq" / "value")
.get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
throw uhd::runtime_error(
"This device does not support manual configuration of LOs");
}
}
double get_rx_lo_freq(const std::string& name, const size_t chan) override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
if (get_tree()->exists(rx_fe_fe_root / "los")) {
if (name == ALL_LOS) {
throw uhd::runtime_error(
"LO frequency must be retrieved for each stage individually");
} else {
if (get_tree()->exists(rx_fe_fe_root / "los")) {
return get_tree()
->access<double>(rx_fe_fe_root / "los" / name / "freq" / "value")
.get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// Return actual RF frequency if the daughterboard doesn't expose its LO(s)
return get_tree()->access<double>(rx_fe_fe_root / "freq" / " value").get();
}
}
freq_range_t get_rx_lo_freq_range(
const std::string& name, const size_t chan) const override
{
fs_path rx_fe_fe_root = get_db_path("rx", chan);
if (get_tree()->exists(rx_fe_fe_root / "los")) {
if (name == ALL_LOS) {
throw uhd::runtime_error(
"LO frequency range must be retrieved for each stage individually");
} else {
if (get_tree()->exists(rx_fe_fe_root / "los")) {
return get_tree()
->access<freq_range_t>(
rx_fe_fe_root / "los" / name / "freq" / "range")
.get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// Return the actual RF range if the daughterboard doesn't expose its LO(s)
return get_tree()
->access<meta_range_t>(rx_fe_fe_root / "freq" / "range")
.get();
}
}
/*** Calibration API *****************************************************/
void set_tx_dc_offset(const std::complex<double>& offset, size_t chan) override
{
const fs_path dc_offset_path = get_fe_path("tx", chan) / "dc_offset" / "value";
if (get_tree()->exists(dc_offset_path)) {
get_tree()->access<std::complex<double>>(dc_offset_path).set(offset);
} else {
RFNOC_LOG_WARNING("Setting TX DC offset is not possible on this device.");
}
}
meta_range_t get_tx_dc_offset_range(size_t chan) const override
{
const fs_path range_path = get_fe_path("tx", chan) / "dc_offset" / "range";
if (get_tree()->exists(range_path)) {
return get_tree()->access<uhd::meta_range_t>(range_path).get();
} else {
RFNOC_LOG_WARNING(
"This device does not support querying the TX DC offset range.");
return meta_range_t(0.0, 0.0);
}
}
void set_tx_iq_balance(const std::complex<double>& correction, size_t chan) override
{
const fs_path iq_balance_path = get_fe_path("tx", chan) / "iq_balance" / "value";
if (get_tree()->exists(iq_balance_path)) {
get_tree()->access<std::complex<double>>(iq_balance_path).set(correction);
} else {
RFNOC_LOG_WARNING("Setting TX IQ Balance is not possible on this device.");
}
}
void set_rx_dc_offset(const bool enb, size_t chan) override
{
const fs_path dc_offset_path = get_fe_path("rx", chan) / "dc_offset" / "enable";
if (get_tree()->exists(dc_offset_path)) {
get_tree()->access<bool>(dc_offset_path).set(enb);
} else {
RFNOC_LOG_WARNING(
"Setting DC offset compensation is not possible on this device.");
}
}
void set_rx_dc_offset(const std::complex<double>& offset, size_t chan) override
{
const fs_path dc_offset_path = get_fe_path("rx", chan) / "dc_offset" / "value";
if (get_tree()->exists(dc_offset_path)) {
get_tree()->access<std::complex<double>>(dc_offset_path).set(offset);
} else {
RFNOC_LOG_WARNING("Setting RX DC offset is not possible on this device.");
}
}
meta_range_t get_rx_dc_offset_range(size_t chan) const override
{
const fs_path range_path = get_fe_path("rx", chan) / "dc_offset" / "range";
if (get_tree()->exists(range_path)) {
return get_tree()->access<uhd::meta_range_t>(range_path).get();
} else {
RFNOC_LOG_WARNING(
"This device does not support querying the rx DC offset range.");
return meta_range_t(0.0, 0.0);
}
}
void set_rx_iq_balance(const bool enb, size_t chan) override
{
const fs_path iq_balance_path = get_fe_path("rx", chan) / "iq_balance" / "enable";
if (get_tree()->exists(iq_balance_path)) {
get_tree()->access<bool>(iq_balance_path).set(enb);
} else {
RFNOC_LOG_WARNING(
"Setting automatic RX IQ Balance is not possible on this device.");
}
}
void set_rx_iq_balance(const std::complex<double>& correction, size_t chan) override
{
const fs_path iq_balance_path = get_fe_path("rx", chan) / "iq_balance" / "value";
if (get_tree()->exists(iq_balance_path)) {
get_tree()->access<std::complex<double>>(iq_balance_path).set(correction);
} else {
RFNOC_LOG_WARNING(
"Setting manual RX IQ Balance is not possible on this device.");
}
}
/*** GPIO API ************************************************************/
std::vector<std::string> get_gpio_banks() const override
{
return {"FP0", "RX", "TX"};
}
void set_gpio_attr(
const std::string& bank, const std::string& attr, const uint32_t value) override
{
if (bank == "FP0") {
_fp_gpio->set_gpio_attr(usrp::gpio_atr::gpio_attr_rev_map.at(attr), value);
return;
}
if (bank.size() >= 2 and bank[1] == 'X') {
const std::string name = bank.substr(2);
const dboard_iface::unit_t unit = (bank[0] == 'R') ? dboard_iface::UNIT_RX
: dboard_iface::UNIT_TX;
constexpr uint16_t mask = 0xFFFF;
if (attr == "CTRL") {
_db_iface->set_pin_ctrl(unit, value, mask);
} else if (attr == "DDR") {
_db_iface->set_gpio_ddr(unit, value, mask);
} else if (attr == "OUT") {
_db_iface->set_gpio_out(unit, value, mask);
} else if (attr == "ATR_0X") {
_db_iface->set_atr_reg(unit, gpio_atr::ATR_REG_IDLE, value, mask);
} else if (attr == "ATR_RX") {
_db_iface->set_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY, value, mask);
} else if (attr == "ATR_TX") {
_db_iface->set_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY, value, mask);
} else if (attr == "ATR_XX") {
_db_iface->set_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX, value, mask);
} else {
RFNOC_LOG_ERROR("Invalid GPIO attribute name: " << attr);
throw uhd::key_error(std::string("Invalid GPIO attribute name: ") + attr);
}
return;
}
RFNOC_LOG_WARNING(
"Invalid GPIO bank name: `"
<< bank
<< "'. Ignoring call to set_gpio_attr() to retain backward compatibility.");
}
uint32_t get_gpio_attr(const std::string& bank, const std::string& attr) override
{
if (bank == "FP0") {
return _fp_gpio->get_attr_reg(usrp::gpio_atr::gpio_attr_rev_map.at(attr));
}
if (bank.size() >= 2 and bank[1] == 'X') {
const std::string name = bank.substr(2);
const dboard_iface::unit_t unit = (bank[0] == 'R') ? dboard_iface::UNIT_RX
: dboard_iface::UNIT_TX;
if (attr == "CTRL")
return _db_iface->get_pin_ctrl(unit);
if (attr == "DDR")
return _db_iface->get_gpio_ddr(unit);
if (attr == "OUT")
return _db_iface->get_gpio_out(unit);
if (attr == "ATR_0X")
return _db_iface->get_atr_reg(unit, gpio_atr::ATR_REG_IDLE);
if (attr == "ATR_RX")
return _db_iface->get_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY);
if (attr == "ATR_TX")
return _db_iface->get_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY);
if (attr == "ATR_XX")
return _db_iface->get_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX);
if (attr == "READBACK")
return _db_iface->read_gpio(unit);
RFNOC_LOG_ERROR("Invalid GPIO attribute name: " << attr);
throw uhd::key_error(std::string("Invalid GPIO attribute name: ") + attr);
}
RFNOC_LOG_WARNING(
"Invalid GPIO bank name: `"
<< bank
<< "'. get_gpio_attr() will return 0 to retain backward compatibility.");
return 0;
}
/**************************************************************************
* Sensor API
*************************************************************************/
std::vector<std::string> get_rx_sensor_names(size_t chan) const override
{
const fs_path sensor_path = get_db_path("rx", chan) / "sensors";
if (get_tree()->exists(sensor_path)) {
return get_tree()->list(sensor_path);
}
return {};
}
uhd::sensor_value_t get_rx_sensor(const std::string& name, size_t chan) override
{
return get_tree()
->access<uhd::sensor_value_t>(get_db_path("rx", chan) / "sensors" / name)
.get();
}
std::vector<std::string> get_tx_sensor_names(size_t chan) const override
{
const fs_path sensor_path = get_db_path("tx", chan) / "sensors";
if (get_tree()->exists(sensor_path)) {
return get_tree()->list(sensor_path);
}
return {};
}
uhd::sensor_value_t get_tx_sensor(const std::string& name, size_t chan) override
{
return get_tree()
->access<uhd::sensor_value_t>(get_db_path("tx", chan) / "sensors" / name)
.get();
}
/**************************************************************************
* EEPROM API
*************************************************************************/
void set_db_eeprom(const uhd::eeprom_map_t& db_eeprom) override
{
const std::string key_prefix = db_eeprom.count("rx_id") ? "rx_" : "tx_";
const std::string id_key = key_prefix + "id";
const std::string serial_key = key_prefix + "serial";
const std::string rev_key = key_prefix + "rev";
if (!(db_eeprom.count(id_key) && db_eeprom.count(serial_key)
&& db_eeprom.count(rev_key))) {
RFNOC_LOG_ERROR("set_db_eeprom() requires id, serial, and rev keys!");
throw uhd::key_error(
"[X300] set_db_eeprom() requires id, serial, and rev keys!");
}
dboard_eeprom_t eeprom;
eeprom.id.from_string(bytes_to_str(db_eeprom.at(id_key)));
eeprom.serial = bytes_to_str(db_eeprom.at(serial_key));
eeprom.revision = bytes_to_str(db_eeprom.at(rev_key));
if (get_tree()->exists(DB_PATH / (key_prefix + "eeprom"))) {
get_tree()
->access<dboard_eeprom_t>(DB_PATH / (key_prefix + "eeprom"))
.set(eeprom);
} else {
RFNOC_LOG_WARNING("Cannot set EEPROM, tree path does not exist.");
}
}
uhd::eeprom_map_t get_db_eeprom() override
{
uhd::eeprom_map_t result;
if (get_tree()->exists(DB_PATH / "rx_eeprom")) {
const auto rx_eeprom =
get_tree()->access<dboard_eeprom_t>(DB_PATH / "rx_eeprom").get();
result["rx_id"] = str_to_bytes(rx_eeprom.id.to_pp_string());
result["rx_serial"] = str_to_bytes(rx_eeprom.serial);
result["rx_rev"] = str_to_bytes(rx_eeprom.revision);
}
if (get_tree()->exists(DB_PATH / "tx_eeprom")) {
const auto tx_eeprom =
get_tree()->access<dboard_eeprom_t>(DB_PATH / "tx_eeprom").get();
result["tx_id"] = str_to_bytes(tx_eeprom.id.to_pp_string());
result["tx_serial"] = str_to_bytes(tx_eeprom.serial);
result["tx_rev"] = str_to_bytes(tx_eeprom.revision);
}
return result;
}
/**************************************************************************
* Radio Identification API Calls
*************************************************************************/
std::string get_slot_name() const override
{
return _radio_type == PRIMARY ? "A" : "B";
}
size_t get_chan_from_dboard_fe(
const std::string& fe, const uhd::direction_t direction) const override
{
switch (direction) {
case uhd::TX_DIRECTION:
return _get_chan_from_map(_tx_fe_map, fe);
case uhd::RX_DIRECTION:
return _get_chan_from_map(_rx_fe_map, fe);
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
std::string get_dboard_fe_from_chan(
const size_t chan, const uhd::direction_t direction) const override
{
switch (direction) {
case uhd::TX_DIRECTION:
return _tx_fe_map.at(chan).db_fe_name;
case uhd::RX_DIRECTION:
return _rx_fe_map.at(chan).db_fe_name;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
std::string get_fe_name(
const size_t chan, const uhd::direction_t direction) const override
{
fs_path name_path =
get_db_path(direction == uhd::RX_DIRECTION ? "rx" : "tx", chan) / "name";
if (!get_tree()->exists(name_path)) {
return get_dboard_fe_from_chan(chan, direction);
}
return get_tree()->access<std::string>(name_path).get();
}
void set_command_time(uhd::time_spec_t time, const size_t chan) override
{
node_t::set_command_time(time, chan);
// This is for TwinRX only:
fs_path cmd_time_path = get_db_path("rx", chan) / "time" / "cmd";
if (get_tree()->exists(cmd_time_path)) {
get_tree()->access<time_spec_t>(cmd_time_path).set(time);
}
}
/**************************************************************************
* MB Interface API Calls
*************************************************************************/
uint32_t get_adc_rx_word() override
{
return regs().peek32(regmap::RADIO_BASE_ADDR + regmap::REG_RX_DATA);
}
void set_adc_test_word(
const std::string& patterna, const std::string& patternb) override
{
_adc->set_test_word(patterna, patternb);
}
void set_adc_checker_enabled(const bool enb) override
{
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, enb ? 1 : 0);
}
bool get_adc_checker_locked(const bool I) override
{
return bool(_regs->misc_ins_reg.read(
I ? radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_LOCKED
: radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_LOCKED));
}
uint32_t get_adc_checker_error_code(const bool I) override
{
return _regs->misc_ins_reg.get(
I ? radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_ERROR
: radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_ERROR);
}
// Documented in x300_radio_mbc_iface.hpp
void self_test_adc(const uint32_t ramp_time_ms) override
{
RFNOC_LOG_DEBUG("Running ADC self-cal...");
// Bypass all front-end corrections
for (size_t i = 0; i < get_num_output_ports(); i++) {
_rx_fe_map[i].core->bypass_all(true);
}
// Test basic patterns
_adc->set_test_word("ones", "ones");
_check_adc(0xfffcfffc);
_adc->set_test_word("zeros", "zeros");
_check_adc(0x00000000);
_adc->set_test_word("ones", "zeros");
_check_adc(0xfffc0000);
_adc->set_test_word("zeros", "ones");
_check_adc(0x0000fffc);
for (size_t k = 0; k < 14; k++) {
_adc->set_test_word("zeros", "custom", 1 << k);
_check_adc(1 << (k + 2));
}
for (size_t k = 0; k < 14; k++) {
_adc->set_test_word("custom", "zeros", 1 << k);
_check_adc(1 << (k + 18));
}
// Turn on ramp pattern test
_adc->set_test_word("ramp", "ramp");
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
// Sleep added for SPI transactions to finish and ramp to start before checker is
// enabled.
std::this_thread::sleep_for(std::chrono::microseconds(1000));
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
std::this_thread::sleep_for(std::chrono::milliseconds(ramp_time_ms));
_regs->misc_ins_reg.refresh();
std::string i_status, q_status;
if (_regs->misc_ins_reg.get(
radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_LOCKED))
if (_regs->misc_ins_reg.get(
radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_ERROR))
i_status = "Bit Errors!";
else
i_status = "Good";
else
i_status = "Not Locked!";
if (_regs->misc_ins_reg.get(
radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_LOCKED))
if (_regs->misc_ins_reg.get(
radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_ERROR))
q_status = "Bit Errors!";
else
q_status = "Good";
else
q_status = "Not Locked!";
// Return to normal mode
_adc->set_test_word("normal", "normal");
if ((i_status != "Good") or (q_status != "Good")) {
throw uhd::runtime_error(
(boost::format("ADC self-test failed for %s. Ramp checker status: "
"{ADC_A=%s, ADC_B=%s}")
% get_unique_id() % i_status % q_status)
.str());
}
// Restore front-end corrections
for (size_t i = 0; i < get_num_output_ports(); i++) {
_rx_fe_map[i].core->bypass_all(false);
}
}
void sync_dac() override
{
_dac->sync();
}
void set_dac_sync(const bool enb, const uhd::time_spec_t& time) override
{
if (time != uhd::time_spec_t(0.0)) {
set_command_time(time, 0);
}
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::DAC_SYNC, enb ? 1 : 0);
if (!enb && time != uhd::time_spec_t(0.0)) {
set_command_time(uhd::time_spec_t(0.0), 0);
}
}
void dac_verify_sync() override
{
_dac->verify_sync();
}
private:
/**************************************************************************
* ADC Control
*************************************************************************/
//! Create the ADC/DAC objects, reset them, run ADC cal
void _init_codecs()
{
_regs = std::make_unique<radio_regmap_t>(get_block_id().get_block_count());
_regs->initialize(*_wb_iface, true);
// Only Radio0 has the ADC/DAC reset bits
if (_radio_type == PRIMARY) {
RFNOC_LOG_TRACE("Resetting DAC and ADCs...");
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1);
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0);
_regs->misc_outs_reg.flush();
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 0);
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 1);
_regs->misc_outs_reg.flush();
}
_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::DAC_ENABLED, 1);
RFNOC_LOG_TRACE("Creating ADC interface...");
_adc = x300_adc_ctrl::make(_spi, DB_ADC_SEN);
RFNOC_LOG_TRACE("Creating DAC interface...");
_dac = x300_dac_ctrl::make(_spi, DB_DAC_SEN, _master_clock_rate);
_self_cal_adc_capture_delay();
////////////////////////////////////////////////////////////////
// create legacy codec control objects
////////////////////////////////////////////////////////////////
// DAC has no gains
get_tree()->create<int>("tx_codec/gains");
get_tree()->create<std::string>("tx_codec/name").set("ad9146");
get_tree()->create<std::string>("rx_codec/name").set("ads62p48");
get_tree()
->create<meta_range_t>("rx_codec/gains/digital/range")
.set(meta_range_t(0, 6.0, 0.5));
get_tree()
->create<double>("rx_codec/gains/digital/value")
.add_coerced_subscriber([this](const double gain) { _adc->set_gain(gain); })
.set(0);
}
//! Calibrate delays on the ADC. This needs to happen before every session.
void _self_cal_adc_capture_delay()
{
RFNOC_LOG_TRACE("Running ADC capture delay self-cal...");
constexpr uint32_t NUM_DELAY_STEPS = 32; // The IDELAYE2 element has 32 steps
// Retry self-cal if it fails in warmup situations
constexpr uint32_t NUM_RETRIES = 2;
constexpr int32_t MIN_WINDOW_LEN = 4;
int32_t win_start = -1, win_stop = -1;
uint32_t iter = 0;
while (iter++ < NUM_RETRIES) {
for (uint32_t dly_tap = 0; dly_tap < NUM_DELAY_STEPS; dly_tap++) {
// Apply delay
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_VAL, dly_tap);
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 1);
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 0);
uint32_t err_code = 0;
// -- Test I Channel --
// Put ADC in ramp test mode. Tie the other channel to all ones.
_adc->set_test_word("ramp", "ones");
// Turn on the pattern checker in the FPGA. It will lock when it sees a
// zero and count deviations from the expected value
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
// 5ms @ 200MHz = 1 million samples
std::this_thread::sleep_for(std::chrono::milliseconds(5));
if (_regs->misc_ins_reg.read(
radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_I_LOCKED)) {
err_code += _regs->misc_ins_reg.get(
radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_I_ERROR);
} else {
err_code += 100; // Increment error code by 100 to indicate no lock
}
// -- Test Q Channel --
// Put ADC in ramp test mode. Tie the other channel to all ones.
_adc->set_test_word("ones", "ramp");
// Turn on the pattern checker in the FPGA. It will lock when it sees a
// zero and count deviations from the expected value
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
// 5ms @ 200MHz = 1 million samples
std::this_thread::sleep_for(std::chrono::milliseconds(5));
if (_regs->misc_ins_reg.read(
radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_Q_LOCKED)) {
err_code += _regs->misc_ins_reg.get(
radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_Q_ERROR);
} else {
err_code += 100; // Increment error code by 100 to indicate no lock
}
if (err_code == 0) {
if (win_start == -1) { // This is the first window
win_start = dly_tap;
win_stop = dly_tap;
} else { // We are extending the window
win_stop = dly_tap;
}
} else {
if (win_start != -1) { // A valid window turned invalid
if (win_stop - win_start >= MIN_WINDOW_LEN) {
break; // Valid window found
} else {
win_start = -1; // Reset window
}
}
}
// UHD_LOGGER_INFO("X300 RADIO") << (boost::format("CapTap=%d, Error=%d")
// % dly_tap % err_code);
}
// Retry the self-cal if it fails
if ((win_start == -1 || (win_stop - win_start) < MIN_WINDOW_LEN)
&& iter < NUM_RETRIES /*not last iteration*/) {
win_start = -1;
win_stop = -1;
std::this_thread::sleep_for(std::chrono::milliseconds(2000));
} else {
break;
}
}
_adc->set_test_word("normal", "normal");
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
if (win_start == -1) {
throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration "
"failed. Convergence error.");
}
if (win_stop - win_start < MIN_WINDOW_LEN) {
throw uhd::runtime_error(
"self_cal_adc_capture_delay: Self calibration failed. "
"Valid window too narrow.");
}
uint32_t ideal_tap = (win_stop + win_start) / 2;
_regs->misc_outs_reg.write(
radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_VAL, ideal_tap);
_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 1);
_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 0);
double tap_delay = (1.0e12 / 200e6) / (2 * 32); // in ps
RFNOC_LOG_DEBUG(
boost::format("ADC capture delay self-cal done (Tap=%d, Window=%d, "
"TapDelay=%.3fps, Iter=%d)")
% ideal_tap % (win_stop - win_start) % tap_delay % iter);
}
//! Verify that the output of the ADC matches an expected \p val
void _check_adc(const uint32_t val)
{
// Wait for previous control transaction to flush
get_adc_rx_word();
// Wait for ADC test pattern to propagate
std::this_thread::sleep_for(std::chrono::microseconds(5));
// Read value of RX readback register and verify, adapt for I inversion
// in FPGA
const uint32_t adc_rb = get_adc_rx_word() ^ 0xfffc0000;
if (val != adc_rb) {
RFNOC_LOG_ERROR(boost::format("ADC self-test failed! (Exp=0x%x, Got=0x%x)")
% val % adc_rb);
throw uhd::runtime_error("ADC self-test failed!");
}
}
void reset_codec()
{
RFNOC_LOG_TRACE("Start reset_codec");
if (_radio_type == PRIMARY) { // ADC/DAC reset lines only exist in Radio0
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1);
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0);
_regs->misc_outs_reg.flush();
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 0);
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 1);
_regs->misc_outs_reg.flush();
}
_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::DAC_ENABLED, 1);
UHD_ASSERT_THROW(bool(_adc));
UHD_ASSERT_THROW(bool(_dac));
_adc->reset();
_dac->reset();
RFNOC_LOG_TRACE("Done reset_codec");
}
/**************************************************************************
* DBoard
*************************************************************************/
fs_path get_db_path(const std::string& dir, const size_t chan) const
{
UHD_ASSERT_THROW(dir == "rx" || dir == "tx");
if (dir == "rx" && chan >= get_num_output_ports()) {
throw uhd::key_error("Invalid RX channel: " + std::to_string(chan));
}
if (dir == "tx" && chan >= get_num_input_ports()) {
throw uhd::key_error("Invalid TX channel: " + std::to_string(chan));
}
return DB_PATH / (dir + "_frontends")
/ ((dir == "rx") ? _rx_fe_map.at(chan).db_fe_name
: _tx_fe_map.at(chan).db_fe_name);
}
fs_path get_fe_path(const std::string& dir, const size_t chan) const
{
UHD_ASSERT_THROW(dir == "rx" || dir == "tx");
if (dir == "rx" && chan >= get_num_output_ports()) {
throw uhd::key_error("Invalid RX channel: " + std::to_string(chan));
}
if (dir == "tx" && chan >= get_num_input_ports()) {
throw uhd::key_error("Invalid TX channel: " + std::to_string(chan));
}
return FE_PATH / (dir + "_fe_corrections")
/ ((dir == "rx") ? _rx_fe_map.at(chan).db_fe_name
: _tx_fe_map.at(chan).db_fe_name);
}
void _init_db()
{
constexpr size_t BASE_ADDR = 0x50;
constexpr size_t RX_EEPROM_ADDR = 0x5;
constexpr size_t TX_EEPROM_ADDR = 0x4;
constexpr size_t GDB_EEPROM_ADDR = 0x1;
static const std::vector<size_t> EEPROM_ADDRS{
RX_EEPROM_ADDR, TX_EEPROM_ADDR, GDB_EEPROM_ADDR};
static const std::vector<std::string> EEPROM_PATHS{
"rx_eeprom", "tx_eeprom", "gdb_eeprom"};
const size_t DB_OFFSET = (_radio_type == PRIMARY) ? 0x0 : 0x2;
auto zpu_i2c = _x300_mb_control->get_zpu_i2c();
auto clock = _x300_mb_control->get_clock_ctrl();
for (size_t i = 0; i < EEPROM_ADDRS.size(); i++) {
const size_t addr = EEPROM_ADDRS[i] + DB_OFFSET;
// Load EEPROM
_db_eeproms[addr].load(*zpu_i2c, BASE_ADDR | addr);
// Use the RFNoC implementation for Basic/LF dboards
uint16_t dboard_pid = _db_eeproms[addr].id.to_uint16();
switch (dboard_pid) {
case uhd::usrp::dboard::basic_and_lf::BASIC_RX_PID:
case uhd::usrp::dboard::basic_and_lf::LF_RX_PID:
dboard_pid |= uhd::usrp::dboard::basic_and_lf::RFNOC_PID_FLAG;
_db_eeproms[addr].id = dboard_pid;
_basic_lf_rx = true;
break;
case uhd::usrp::dboard::basic_and_lf::BASIC_TX_PID:
case uhd::usrp::dboard::basic_and_lf::LF_TX_PID:
dboard_pid |= uhd::usrp::dboard::basic_and_lf::RFNOC_PID_FLAG;
_db_eeproms[addr].id = dboard_pid;
_basic_lf_tx = true;
break;
}
// Add to tree
get_tree()
->create<dboard_eeprom_t>(DB_PATH / EEPROM_PATHS[i])
.set(_db_eeproms[addr])
.add_coerced_subscriber([this, zpu_i2c, BASE_ADDR, addr](
const uhd::usrp::dboard_eeprom_t& db_eeprom) {
_set_db_eeprom(zpu_i2c, BASE_ADDR | addr, db_eeprom);
});
}
// create a new dboard interface
x300_dboard_iface_config_t db_config;
db_config.gpio = gpio_atr::db_gpio_atr_3000::make(_wb_iface,
gpio_atr::gpio_atr_offsets::make_default(x300_regs::SR_DB_GPIO,
x300_regs::RB_DB_GPIO,
x300_regs::PERIPH_REG_OFFSET));
db_config.spi = _spi;
db_config.rx_spi_slaveno = DB_RX_SEN;
db_config.tx_spi_slaveno = DB_TX_SEN;
db_config.i2c = zpu_i2c;
db_config.clock = clock;
db_config.which_rx_clk = (_radio_type == PRIMARY) ? X300_CLOCK_WHICH_DB0_RX
: X300_CLOCK_WHICH_DB1_RX;
db_config.which_tx_clk = (_radio_type == PRIMARY) ? X300_CLOCK_WHICH_DB0_TX
: X300_CLOCK_WHICH_DB1_TX;
db_config.dboard_slot = (_radio_type == PRIMARY) ? 0 : 1;
db_config.cmd_time_ctrl = _wb_iface;
// create a new dboard manager
RFNOC_LOG_TRACE("Creating DB interface...");
_db_iface = std::make_shared<x300_dboard_iface>(db_config);
RFNOC_LOG_TRACE("Creating DB manager...");
_db_manager = dboard_manager::make(_db_eeproms[RX_EEPROM_ADDR + DB_OFFSET],
_db_eeproms[TX_EEPROM_ADDR + DB_OFFSET],
_db_eeproms[GDB_EEPROM_ADDR + DB_OFFSET],
_db_iface,
get_tree()->subtree(DB_PATH),
true // defer daughterboard initialization
);
RFNOC_LOG_TRACE("DB Manager Initialization complete.");
// The X3x0 radio block defaults to a maximum of two ports, but
// many daughterboards have fewer possible frontends. So we now
// reduce the number of actual ports based on what is connected.
// Note: The Basic and LF boards have two possible frontends on
// the rx side, and one on the tx side. TwinRX boards have two
// possible rx frontends, and require up to two ports on the rx side.
// For all other cases, the number of possible frontends is one for
// rx and tx.
const size_t num_tx_frontends = _db_manager->get_tx_frontends().size();
const size_t num_rx_frontends = _db_manager->get_rx_frontends().size();
if (num_tx_frontends == 2 || num_tx_frontends == 1) {
set_num_input_ports(num_tx_frontends);
} else {
throw uhd::runtime_error("Unexpected number of TX frontends!");
}
if (num_rx_frontends == 2 || num_rx_frontends == 1) {
set_num_output_ports(num_rx_frontends);
} else {
throw uhd::runtime_error("Unexpected number of RX frontends!");
}
// This is specific to TwinRX. Due to driver legacy, we think we have a
// Tx frontend even though we don't. We thus hard-code that knowledge
// here.
if (num_rx_frontends == 2
&& boost::starts_with(
get_tree()->access<std::string>(DB_PATH / "rx_frontends/0/name").get(),
"TwinRX")) {
_twinrx = true;
set_num_input_ports(0);
}
RFNOC_LOG_TRACE("Num Active Frontends: RX: " << get_num_output_ports()
<< " TX: " << get_num_input_ports());
} // _init_db()
void _init_dboards()
{
size_t rx_chan = 0;
size_t tx_chan = 0;
for (const std::string& fe : _db_manager->get_rx_frontends()) {
if (rx_chan >= get_num_output_ports()) {
break;
}
_set_rx_fe(fe, rx_chan);
rx_chan++;
}
for (const std::string& fe : _db_manager->get_tx_frontends()) {
if (tx_chan >= get_num_input_ports()) {
break;
}
_set_tx_fe(fe, tx_chan);
tx_chan++;
}
UHD_ASSERT_THROW(rx_chan or tx_chan);
RFNOC_LOG_DEBUG("Actual sample rate: " << (get_rate() / 1e6) << " Msps.");
// Initialize the daughterboards now that frontend cores and connections exist
_db_manager->initialize_dboards();
// now that dboard is created -- register into rx antenna event
if (not _rx_fe_map.empty()) {
for (size_t i = 0; i < get_num_output_ports(); i++) {
if (get_tree()->exists(get_db_path("rx", i) / "antenna" / "value")) {
// We need a desired subscriber for antenna/value because the experts
// don't coerce that property.
get_tree()
->access<std::string>(get_db_path("rx", i) / "antenna" / "value")
.add_desired_subscriber([this, i](const std::string& led) {
_update_atr_leds(led, i);
})
.update();
} else {
_update_atr_leds("", i); // init anyway, even if never called
}
}
}
// bind frontend corrections to the dboard freq props
if (not _tx_fe_map.empty()) {
for (size_t i = 0; i < get_num_input_ports(); i++) {
if (get_tree()->exists(get_db_path("tx", i) / "freq" / "value")) {
get_tree()
->access<double>(get_db_path("tx", i) / "freq" / "value")
.add_coerced_subscriber([this, i](const double freq) {
set_tx_fe_corrections(freq, i);
});
}
}
}
if (not _rx_fe_map.empty()) {
for (size_t i = 0; i < get_num_output_ports(); i++) {
if (get_tree()->exists(get_db_path("rx", i) / "freq" / "value")) {
get_tree()
->access<double>(get_db_path("rx", i) / "freq" / "value")
.add_coerced_subscriber([this, i](const double freq) {
set_rx_fe_corrections(freq, i);
});
}
}
}
////////////////////////////////////////////////////////////////
// Set gain groups
// Note: The actual gain control comes from the daughterboard drivers, thus,
// we need to call into the prop tree at the appropriate location in order
// to modify the gains.
////////////////////////////////////////////////////////////////
// TX
for (size_t chan = 0; chan < get_num_input_ports(); chan++) {
fs_path rf_gains_path(get_db_path("tx", chan) / "gains");
if (!get_tree()->exists(rf_gains_path)) {
_tx_gain_groups[chan] = gain_group::make_zero();
continue;
}
std::vector<std::string> gain_stages = get_tree()->list(rf_gains_path);
if (gain_stages.empty()) {
_tx_gain_groups[chan] = gain_group::make_zero();
continue;
}
// DAC does not have a gain path
auto gg = gain_group::make();
for (const auto& name : gain_stages) {
gg->register_fcns(name,
make_gain_fcns_from_subtree(
get_tree()->subtree(rf_gains_path / name)),
1 /* high prio */);
}
_tx_gain_groups[chan] = gg;
}
// RX
for (size_t chan = 0; chan < get_num_output_ports(); chan++) {
fs_path rf_gains_path(get_db_path("rx", chan) / "gains");
fs_path adc_gains_path("rx_codec/gains");
auto gg = gain_group::make();
// ADC also has a gain path
for (const auto& name : get_tree()->list(adc_gains_path)) {
gg->register_fcns("ADC-" + name,
make_gain_fcns_from_subtree(
get_tree()->subtree(adc_gains_path / name)),
0 /* low prio */);
}
if (get_tree()->exists(rf_gains_path)) {
for (const auto& name : get_tree()->list(rf_gains_path)) {
gg->register_fcns(name,
make_gain_fcns_from_subtree(
get_tree()->subtree(rf_gains_path / name)),
1 /* high prio */);
}
}
_rx_gain_groups[chan] = gg;
}
////////////////////////////////////////////////////////////////
// Load calibration data
////////////////////////////////////////////////////////////////
RFNOC_LOG_TRACE("Initializing power calibration data...");
// RX and TX are symmetric, so we use a macro to avoid some duplication
#define INIT_POWER_CAL(dir) \
{ \
const std::string DIR = (#dir == std::string("tx")) ? "TX" : "RX"; \
const size_t num_ports = (#dir == std::string("tx")) ? get_num_input_ports() \
: get_num_output_ports(); \
_##dir##_pwr_mgr.resize(num_ports); \
for (size_t chan = 0; chan < num_ports; chan++) { \
const auto eeprom = \
get_tree()->access<dboard_eeprom_t>(DB_PATH / (#dir "_eeprom")).get(); \
/* The cal serial is the daughterboard serial plus the FE name */ \
const std::string cal_serial = \
eeprom.serial + "#" + _##dir##_fe_map.at(chan).db_fe_name; \
/* Now create a gain group for this. _?x_gain_groups won't work, */ \
/* unfortunately, because it doesn't group the gains we want them to */ \
/* be grouped. */ \
auto ggroup = uhd::gain_group::make(); \
ggroup->register_fcns(HW_GAIN_STAGE, \
{[this, chan]() { return get_##dir##_gain_range(chan); }, \
[this, chan]() { return get_##dir##_gain(chan); }, \
[this, chan](const double gain) { set_##dir##_gain(gain, chan); }}, \
10 /* High priority */); \
/* If we had a digital (baseband) gain, we would register it here, so */ \
/* that the power manager would know to use it as a backup gain stage. */ \
_##dir##_pwr_mgr.at(chan) = pwr_cal_mgr::make( \
cal_serial, \
"X300-CAL-" + DIR, \
[this, chan]() { return get_##dir##_frequency(chan); }, \
[this, chan]() -> std::string { \
const auto id_path = get_db_path(#dir, chan) / "id"; \
const std::string db_suffix = \
get_tree()->exists(id_path) \
? get_tree()->access<std::string>(id_path).get() \
: "generic"; \
const std::string ant = get_##dir##_antenna(chan); \
return "x3xx_pwr_" + db_suffix + "_" + #dir + "_" \
+ pwr_cal_mgr::sanitize_antenna_name(ant); \
}, \
ggroup); \
/* Every time we retune, we need to re-set the power level, if */ \
/* we're in power tracking mode */ \
get_tree() \
->access<double>(get_db_path(#dir, chan) / "freq" / "value") \
.add_coerced_subscriber([this, chan](const double) { \
_##dir##_pwr_mgr.at(chan)->update_power(); \
}); \
} \
} // end macro
INIT_POWER_CAL(tx);
INIT_POWER_CAL(rx);
} /* _init_dboards */
void _set_db_eeprom(i2c_iface::sptr i2c,
const size_t addr,
const uhd::usrp::dboard_eeprom_t& db_eeprom)
{
db_eeprom.store(*i2c, addr);
_db_eeproms[addr] = db_eeprom;
}
// A note on updating the LED ATR register: There is a single ATR register
// for the radio block, despite there being 2 channels. For most (1-channel)
// daughterboards, the rules are simple: When transmitting, the red LED turns
// on. When receiving, either the green LED under the RX2 or on the TX/RX
// port turn, depending on if the user has selected a TX/RX antenna or not.
// For TwinRX, we have additional rules. The board has two channels, but
// either of them can used with any SMA port. We therefore have to check
// which channels are active (0, 1, or both) and on the active channels,
// which set of antenna ports is used (RX1 aka TX/RX, RX2). All active RX
// ports shall then be added the the RX ATR register.
void _update_atr_leds(const std::string& rx_ant, const size_t /*chan*/)
{
uint32_t rx_led_atr_state = 0;
if (_twinrx) {
for (size_t chan = 0; chan < get_num_output_ports(); chan++) {
const auto fe_enable_path = get_db_path("rx", chan) / "enabled";
if (get_tree()->access<bool>(fe_enable_path).get()) {
if (get_rx_antenna(chan) == "RX1") {
rx_led_atr_state |= x300_regs::SR_LED_TXRX_RX;
}
if (get_rx_antenna(chan) == "RX2") {
rx_led_atr_state |= x300_regs::SR_LED_RX2_RX;
}
}
}
} else {
rx_led_atr_state = rx_ant == "TX/RX" ? x300_regs::SR_LED_TXRX_RX
: x300_regs::SR_LED_RX2_RX;
}
_leds->set_atr_reg(gpio_atr::ATR_REG_RX_ONLY, rx_led_atr_state);
}
void _set_rx_fe(const std::string& fe, const size_t chan)
{
_rx_fe_map[chan].db_fe_name = fe;
_db_iface->add_rx_fe(fe, _rx_fe_map[chan].core);
const std::string connection =
get_tree()->access<std::string>(get_db_path("rx", chan) / "connection").get();
const double if_freq =
(get_tree()->exists(get_db_path("rx", chan) / "if_freq" / "value"))
? get_tree()
->access<double>(get_db_path("rx", chan) / "if_freq" / "value")
.get()
: 0.0;
_rx_fe_map[chan].core->set_fe_connection(
usrp::fe_connection_t(connection, if_freq));
}
void _set_tx_fe(const std::string& fe, const size_t chan)
{
_tx_fe_map[chan].db_fe_name = fe;
const std::string connection =
get_tree()->access<std::string>(get_db_path("tx", chan) / "connection").get();
_tx_fe_map[chan].core->set_mux(connection);
}
void set_rx_fe_corrections(const double lo_freq, const size_t chan)
{
if (not _ignore_cal_file) {
apply_rx_fe_corrections(get_tree(),
get_tree()->access<dboard_eeprom_t>(DB_PATH / "rx_eeprom").get().serial,
get_fe_path("rx", chan),
lo_freq);
}
}
void set_tx_fe_corrections(const double lo_freq, const size_t chan)
{
if (not _ignore_cal_file) {
apply_tx_fe_corrections(get_tree(),
get_tree()->access<dboard_eeprom_t>(DB_PATH / "tx_eeprom").get().serial,
get_fe_path("tx", chan),
lo_freq);
}
}
/**************************************************************************
* noc_block_base API
*************************************************************************/
//! Safely shut down all peripherals
//
// Reminder: After this is called, no peeks and pokes are allowed!
void deinit() override
{
RFNOC_LOG_TRACE("deinit()");
// Reset daughterboard
_db_manager.reset();
_db_iface.reset();
// Reset codecs
if (_radio_type == PRIMARY) {
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1);
_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0);
}
_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::DAC_ENABLED, 0);
_regs->misc_outs_reg.flush();
_adc.reset();
_dac.reset();
// Destroy all other periph controls
_spi.reset();
_fp_gpio.reset();
_leds.reset();
_rx_fe_map.clear();
_tx_fe_map.clear();
}
bool check_topology(const std::vector<size_t>& connected_inputs,
const std::vector<size_t>& connected_outputs) override
{
RFNOC_LOG_TRACE("check_topology()");
if (!node_t::check_topology(connected_inputs, connected_outputs)) {
return false;
}
for (size_t chan = 0; chan < get_num_input_ports(); chan++) {
const auto fe_enable_path = get_db_path("tx", chan) / "enabled";
if (get_tree()->exists(fe_enable_path)) {
const bool chan_active = std::any_of(connected_inputs.cbegin(),
connected_inputs.cend(),
[chan](const size_t input) { return input == chan; });
RFNOC_LOG_TRACE(
"Enabling TX chan " << chan << ": " << (chan_active ? "Yes" : "No"));
get_tree()->access<bool>(fe_enable_path).set(chan_active);
}
}
for (size_t chan = 0; chan < get_num_output_ports(); chan++) {
const auto fe_enable_path = get_db_path("rx", chan) / "enabled";
if (get_tree()->exists(fe_enable_path)) {
const bool chan_active = std::any_of(connected_outputs.cbegin(),
connected_outputs.cend(),
[chan](const size_t output) { return output == chan; });
RFNOC_LOG_TRACE(
"Enabling RX chan " << chan << ": " << (chan_active ? "Yes" : "No"));
get_tree()->access<bool>(fe_enable_path).set(chan_active);
}
// Modifying the number of active channels can affect how the
// front-panel LEDs get configured for TwinRX boards. Worst case,
// this is a no-op since we call it with the same argument as it was
// called before. Note this must be called after the 'enable'
// property is set.
_update_atr_leds(get_rx_antenna(chan), chan);
}
return true;
}
/**************************************************************************
* Attributes
*************************************************************************/
//! Register space for the ADC and DAC
class radio_regmap_t : public uhd::soft_regmap_t
{
public:
class misc_outs_reg_t : public uhd::soft_reg32_wo_t
{
public:
UHD_DEFINE_SOFT_REG_FIELD(DAC_ENABLED, /*width*/ 1, /*shift*/ 0); //[0]
UHD_DEFINE_SOFT_REG_FIELD(DAC_RESET_N, /*width*/ 1, /*shift*/ 1); //[1]
UHD_DEFINE_SOFT_REG_FIELD(ADC_RESET, /*width*/ 1, /*shift*/ 2); //[2]
UHD_DEFINE_SOFT_REG_FIELD(ADC_DATA_DLY_STB, /*width*/ 1, /*shift*/ 3); //[3]
UHD_DEFINE_SOFT_REG_FIELD(ADC_DATA_DLY_VAL, /*width*/ 5, /*shift*/ 4); //[8:4]
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER_ENABLED, /*width*/ 1, /*shift*/ 9); //[9]
UHD_DEFINE_SOFT_REG_FIELD(DAC_SYNC, /*width*/ 1, /*shift*/ 10); //[10]
misc_outs_reg_t() : uhd::soft_reg32_wo_t(x300_regs::SR_MISC_OUTS)
{
// Initial values
set(DAC_ENABLED, 0);
set(DAC_RESET_N, 0);
set(ADC_RESET, 0);
set(ADC_DATA_DLY_STB, 0);
set(ADC_DATA_DLY_VAL, 16);
set(ADC_CHECKER_ENABLED, 0);
set(DAC_SYNC, 0);
}
} misc_outs_reg;
class misc_ins_reg_t : public uhd::soft_reg64_ro_t
{
public:
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER0_Q_LOCKED, /*width*/ 1, /*shift*/ 32); //[0]
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER0_I_LOCKED, /*width*/ 1, /*shift*/ 33); //[1]
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER1_Q_LOCKED, /*width*/ 1, /*shift*/ 34); //[2]
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER1_I_LOCKED, /*width*/ 1, /*shift*/ 35); //[3]
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER0_Q_ERROR, /*width*/ 1, /*shift*/ 36); //[4]
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER0_I_ERROR, /*width*/ 1, /*shift*/ 37); //[5]
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER1_Q_ERROR, /*width*/ 1, /*shift*/ 38); //[6]
UHD_DEFINE_SOFT_REG_FIELD(
ADC_CHECKER1_I_ERROR, /*width*/ 1, /*shift*/ 39); //[7]
misc_ins_reg_t() : uhd::soft_reg64_ro_t(x300_regs::RB_MISC_IO) {}
} misc_ins_reg;
radio_regmap_t(int radio_num)
: soft_regmap_t("radio" + std::to_string(radio_num) + "_regmap")
{
add_to_map(misc_outs_reg, "misc_outs_reg", PRIVATE);
add_to_map(misc_ins_reg, "misc_ins_reg", PRIVATE);
}
}; /* class radio_regmap_t */
//! wb_iface Instance for _regs
uhd::timed_wb_iface::sptr _wb_iface;
//! Instantiation of regs object for ADC and DAC (MISC_OUT register)
std::unique_ptr<radio_regmap_t> _regs;
//! Reference to the MB controller, typecast
std::shared_ptr<x300_mb_controller> _x300_mb_control;
//! Reference to the DBoard SPI core (also controls ADC/DAC)
spi_core_3000::sptr _spi;
//! Reference to the ADC controller
x300_adc_ctrl::sptr _adc;
//! Reference to the DAC controller
x300_dac_ctrl::sptr _dac;
//! Front-panel GPIO
usrp::gpio_atr::gpio_atr_3000::sptr _fp_gpio;
//! LEDs
usrp::gpio_atr::gpio_atr_3000::sptr _leds;
struct rx_fe_perif
{
std::string name;
std::string db_fe_name;
rx_frontend_core_3000::sptr core;
};
struct tx_fe_perif
{
std::string name;
std::string db_fe_name;
tx_frontend_core_200::sptr core;
};
bool _basic_lf_rx = false;
bool _basic_lf_tx = false;
bool _twinrx = false;
std::unordered_map<size_t, rx_fe_perif> _rx_fe_map;
std::unordered_map<size_t, tx_fe_perif> _tx_fe_map;
//! Cache of EEPROM info (one per channel)
std::unordered_map<size_t, usrp::dboard_eeprom_t> _db_eeproms;
//! Reference to DB manager
usrp::dboard_manager::sptr _db_manager;
//! Reference to DB iface
std::shared_ptr<x300_dboard_iface> _db_iface;
enum radio_connection_t { PRIMARY, SECONDARY };
radio_connection_t _radio_type;
bool _ignore_cal_file = false;
std::unordered_map<size_t, uhd::gain_group::sptr> _tx_gain_groups;
std::unordered_map<size_t, uhd::gain_group::sptr> _rx_gain_groups;
double _master_clock_rate = DEFAULT_RATE;
};
UHD_RFNOC_BLOCK_REGISTER_FOR_DEVICE_DIRECT(
x300_radio_control, RADIO_BLOCK, X300, "Radio", true, "radio_clk", "radio_clk")
|