1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
//
// Copyright 2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "chinch.h"
#define PCIE_MSG_REG_BASE 0xFB00
#define PCIE_MSG_DATA_REG 0 //Write: Data register for outbound requests and responses
//Read: Latched data for inbound requests
#define PCIE_MSG_CTRL_REG 1 //Write: Control register for outbound requests and responses (Initiates xfer)
//Read: Latched control word for inbound requests
#define PCIE_MSG_RESP_REG 2 //Read: Latched response data for outbound requests
#define PCIE_MSG_STATUS_REG 3 //Read: Status register for inbound and outbound transactions
// Transaction Word Format
//
// -Control- --Data--
// 63 32 31 0
// | | | |
// FXXA AAAA DDDD DDDD
//
// where:
// D = Data/Payload
// A = Address
// X = Reserved
// F = Flags: {Read_Response, Write_Request, Read_Request, Half_Word_Cycle}
#define PCIE_CTRL_REG_READ_RESP (1<<31)
#define PCIE_CTRL_REG_WRITE (1<<30)
#define PCIE_CTRL_REG_READ (1<<29)
#define PCIE_CTRL_REG_HALF_WORD (1<<28)
#define PCIE_CTRL_REG_ADDR_MASK 0x000FFFFF
#define PCIE_STATUS_REG_READ_PENDING (1<<0)
#define PCIE_STATUS_REG_REQ_PENDING (1<<1)
#define PCIE_STATUS_REG_RESP_PENDING (1<<2)
#define PCIE_STATUS_REG_BUSY (1<<4)
#define CHINCH_FPGA_CONFIG_REG 0x58
#define CHINCH_FLASH_WINDOW_REG0 0xC0
#define CHINCH_FLASH_WINDOW_REG1 0xE0
#define CHINCH_FLASH_2AAA_REG 0x400
#define CHINCH_FLASH_5555_REG 0x408
#define CHINCH_FLASH_WINDOW_BASE 0x60000
#define CHINCH_FLASH_WINDOW_SIZE 0x20000
#define CHINCH_FLASH_WINDOW_CONF 0x91
//-----------------------------------------------------
// Peek-Poke interface
//-----------------------------------------------------
bool chinch_poke(
const uint32_t addr,
const uint32_t data,
bool half_word,
uint32_t timeout
)
{
//Build transaction control word
uint32_t ctrl_word = 0, i;
ctrl_word |= (addr & PCIE_CTRL_REG_ADDR_MASK);
if (half_word) ctrl_word |= PCIE_CTRL_REG_HALF_WORD;
ctrl_word |= PCIE_CTRL_REG_WRITE;
//Wait for space in the transaction queue or timeout
i = 0;
while ((wb_peek32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_STATUS_REG)) & PCIE_STATUS_REG_BUSY) != 0) {
if (++i > timeout) return false;
}
//Flush transaction control and data registers
wb_poke32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_DATA_REG), data);
wb_poke32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_CTRL_REG), ctrl_word);
return true;
}
bool chinch_peek(
const uint32_t addr,
uint32_t* data,
bool half_word,
uint32_t timeout
)
{
//Build transaction control word
uint32_t ctrl_word = 0, i;
ctrl_word |= (addr & PCIE_CTRL_REG_ADDR_MASK);
if (half_word) ctrl_word |= PCIE_CTRL_REG_HALF_WORD;
ctrl_word |= PCIE_CTRL_REG_READ;
//Wait for space in the transaction queue or timeout
i = 0;
while ((wb_peek32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_STATUS_REG)) & PCIE_STATUS_REG_BUSY) != 0) {
if (++i > timeout) return false;
}
//Flush transaction control register
if (data) *data = 0;
wb_poke32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_CTRL_REG), ctrl_word);
//Wait for read completion or timeout
i = 0;
while ((wb_peek32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_STATUS_REG)) & PCIE_STATUS_REG_READ_PENDING) != 0) {
if (++i > timeout) return false;
}
//Read transaction data register
if (data) *data = wb_peek32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_RESP_REG));
return true;
}
//-----------------------------------------------------
// Flash access
//-----------------------------------------------------
uint32_t g_cached_win_reg0;
uint32_t g_cached_win_reg1;
bool chinch_flash_init()
{
chinch_peek32(CHINCH_FLASH_WINDOW_REG0, &g_cached_win_reg0);
chinch_peek32(CHINCH_FLASH_WINDOW_REG1, &g_cached_win_reg1);
bool status = true, passed = true;
STATUS_MERGE(chinch_poke32(CHINCH_FLASH_WINDOW_REG0, CHINCH_FLASH_WINDOW_BASE | CHINCH_FLASH_WINDOW_CONF), status);
//Run a loopback test to ensure that we will not corrupt the flash.
STATUS_MERGE(chinch_poke32(0x200, 0xDEADBEEF), status);
STATUS_MERGE(chinch_poke16(0x204, 0x5678), status);
uint32_t reg_val;
STATUS_MERGE(chinch_peek16(0x0, ®_val), status);
STATUS_MERGE(chinch_poke16(0x206, reg_val), status);
STATUS_MERGE(chinch_peek32(0x200, ®_val), status);
passed &= (reg_val == 0xDEADBEEF);
STATUS_MERGE(chinch_peek32(0x204, ®_val), status);
passed &= (reg_val == 0x7AD05678);
return status && passed;
}
void chinch_flash_cleanup()
{
chinch_poke32(CHINCH_FLASH_WINDOW_REG0, g_cached_win_reg0);
chinch_poke32(CHINCH_FLASH_WINDOW_REG1, g_cached_win_reg1);
}
bool chinch_flash_select_sector(uint32_t sector)
{
return chinch_poke32(CHINCH_FLASH_WINDOW_REG1, sector * CHINCH_FLASH_WINDOW_SIZE);
}
bool chinch_flash_erase_sector()
{
bool status = true;
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_5555_REG, 0x00AA), status); //Unlock #1
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_2AAA_REG, 0x0055), status); //Unlock #2
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_5555_REG, 0x0080), status); //Setup
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_5555_REG, 0x00AA), status); //Unlock #1
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_2AAA_REG, 0x0055), status); //Unlock #2
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_WINDOW_BASE, 0x0030), status); //Erase
if (status) {
uint32_t read_data;
while (true) {
status = chinch_peek16(CHINCH_FLASH_WINDOW_BASE, &read_data); //Wait for sector to erase
if (((read_data & 0xFFFF) == 0xFFFF) || !status) break;
}
}
return status;
}
bool chinch_flash_read_buf(uint32_t offset, uint16_t* buf, uint32_t size)
{
bool status = true;
uint32_t base_addr = CHINCH_FLASH_WINDOW_BASE | (offset & 0x3FFFF);
for (uint32_t i = 0; (i < size) && status; i++) {
uint32_t word;
STATUS_CHAIN(chinch_peek16(base_addr + (i * 2), &word), status);
buf[i] = (uint16_t)word;
}
return status;
}
bool chinch_flash_write_buf(uint32_t offset, uint16_t* buf, uint32_t size)
{
if (size > CHINCH_FLASH_MAX_BUF_WRITES || buf == 0) return false;
bool status = true;
//Setup buffered write
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_5555_REG, 0x00AA), status); //Unlock #1
STATUS_MERGE(chinch_poke16(CHINCH_FLASH_2AAA_REG, 0x0055), status); //Unlock #2
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_WINDOW_BASE, 0x0025), status); //Setup write
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_WINDOW_BASE, size - 1), status); //Num words
//Write the data
uint32_t base_addr = CHINCH_FLASH_WINDOW_BASE | (offset & 0x3FFFF);
for (uint32_t i = 0; i < size; i++) {
STATUS_CHAIN(chinch_poke16(base_addr + (i * 2), buf[i]), status);
}
//Commit write
STATUS_CHAIN(chinch_poke16(CHINCH_FLASH_WINDOW_BASE, 0x0029), status);
//Poll for completion
//Bit 7 of the data at the final address is the status bit.
//It is set to the inverse of bit 7 of the final data to be
//written until the final write is completed.
uint32_t read_data;
do {
STATUS_MERGE(chinch_peek16(base_addr + ((size - 1) * 2), &read_data), status);
} while (status && (((uint16_t)read_data ^ buf[size - 1]) & (1 << 7)));
return status;
}
//-----------------------------------------------------
// FPGA Configuration
//-----------------------------------------------------
void chinch_start_config()
{
chinch_poke32(CHINCH_FPGA_CONFIG_REG, 0x1);
}
config_status_t chinch_get_config_status()
{
bool status = true;
uint32_t read_data;
STATUS_MERGE(chinch_peek32(CHINCH_FPGA_CONFIG_REG, &read_data), status);
return status ? (config_status_t)read_data : CHINCH_CONFIG_ERROR;
}
//-----------------------------------------------------
// Read-back interface for the user initiated
// PCIe register transactions
//-----------------------------------------------------
pcie_register_xact_t g_pcie_reg_xact_info;
uint32_t g_pcie_res_timeout;
bool _respond_to_pcie_xact_request(uint32_t response, uint32_t timeout)
{
//Wait for space in the transaction queue or timeout
uint32_t i = 0;
while ((wb_peek32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_STATUS_REG)) & PCIE_STATUS_REG_BUSY) != 0) {
if (++i > g_pcie_res_timeout) return false;
}
//First write data and then the control register to ensure coherency
wb_poke32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_DATA_REG), response);
wb_poke32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_CTRL_REG), PCIE_CTRL_REG_READ_RESP);
return true;
}
bool check_pcie_user_regport(pcie_register_xact_t** xact_info_hdl)
{
//Check for pending transaction requests
if ((wb_peek32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_STATUS_REG)) & PCIE_STATUS_REG_REQ_PENDING) != 0) {
//Attach responder to transaction info
g_pcie_reg_xact_info.respond = _respond_to_pcie_xact_request;
//First read data and then the control register to ensure coherency
g_pcie_reg_xact_info.data = wb_peek32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_DATA_REG));
uint32_t xact_control = wb_peek32(SR_ADDR(PCIE_MSG_REG_BASE, PCIE_MSG_CTRL_REG));
g_pcie_reg_xact_info.addr = xact_control & PCIE_CTRL_REG_ADDR_MASK;
g_pcie_reg_xact_info.size =
(xact_control & PCIE_CTRL_REG_HALF_WORD) == 0 ? PCIE_XACT_32_BIT : PCIE_XACT_16_BIT;
if ((xact_control & PCIE_CTRL_REG_READ) != 0)
g_pcie_reg_xact_info.type = PCIE_XACT_READ;
else if ((xact_control & PCIE_CTRL_REG_WRITE) != 0)
g_pcie_reg_xact_info.type = PCIE_XACT_WRITE;
else
g_pcie_reg_xact_info.type = PCIE_XACT_ERROR;
*xact_info_hdl = &g_pcie_reg_xact_info;
return true;
} else {
*xact_info_hdl = 0;
return false;
}
}
bool forward_pcie_user_xact_to_wb()
{
pcie_register_xact_t* xact_info;
if (check_pcie_user_regport(&xact_info)) {
if (xact_info->size == PCIE_XACT_32_BIT) {
//Only respond to 32-bit transactions because that is all the LVFPGA interface can send
if (xact_info->type == PCIE_XACT_WRITE) {
wb_poke32(xact_info->addr, xact_info->data);
return true;
} else if (xact_info->type == PCIE_XACT_READ) {
return xact_info->respond(wb_peek32(xact_info->addr), CHINCH_DEFAULT_XACT_TIMEOUT);
}
}
}
return false;
}
|