1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
|
/*
* Copyright 2007,2009 Free Software Foundation, Inc.
* Copyright 2009 Ettus Research LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "../x300/x300_defs.h"
#include "ethernet.h"
#include "cron.h"
#include <trace.h>
#include "wb_i2c.h"
#include "wb_utils.h"
//#include "memory_map.h"
//#include "eth_phy.h"
//#include "pic.h"
//#include "hal_io.h"
//#include "nonstdio.h"
#include <stdint.h>
#include <stdbool.h>
#include "xge_phy.h"
#include "xge_mac.h"
#include <u3_net_stack.h>
#define VERBOSE 0
#define NETHS 2 // # of ethernet interfaces
static bool links_up[NETHS] = {};
////////////////////////////////////////////////////////////////////////
//
// 10 Gig Ethernet MAC.
//
typedef struct {
volatile uint32_t config; // WO
volatile uint32_t int_pending; // Clear-on-read
volatile uint32_t int_status; // RO
volatile uint32_t int_mask; // RW
volatile uint32_t mdio_data;
volatile uint32_t mdio_addr;
volatile uint32_t mdio_op;
volatile uint32_t mdio_control;
volatile uint32_t gpio;
} xge_regs_t;
#define xge_regs ((xge_regs_t *) base)
#define SFPP_STATUS_MODABS_CHG (1 << 5) // Has MODABS changed since last read?
#define SFPP_STATUS_TXFAULT_CHG (1 << 4) // Has TXFAULT changed since last read?
#define SFPP_STATUS_RXLOS_CHG (1 << 3) // Has RXLOS changed since last read?
#define SFPP_STATUS_MODABS (1 << 2) // MODABS state
#define SFPP_STATUS_TXFAULT (1 << 1) // TXFAULT state
#define SFPP_STATUS_RXLOS (1 << 0) // RXLOS state
int
ethernet_ninterfaces(void)
{
return NETHS;
}
////////////////////////////////////////////////////////////////////////
//
// Clause 45 MDIO used for 10Gig Ethernet has two bus transactions to complete a transfer.
// An initial transaction sets up the address, and a subsequent one transfers the read or write data.
//
static uint32_t
xge_read_mdio(const uint32_t base, const uint32_t address, const uint32_t device, const uint32_t port)
{
// Set register address each iteration
xge_regs->mdio_addr = address;
// Its a clause 45 device. We want to ADDRESS
xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE45) | XGE_MDIO_OP(MDIO_ADDRESS) | XGE_MDIO_ADDR(port) | XGE_MDIO_MMD(device);
// Start MDIO bus transaction
xge_regs->mdio_control = 1;
// Wait until bus transaction complete
while (xge_regs->mdio_control == 1);
// Its a clause 45 device. We want to READ
xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE45) | XGE_MDIO_OP(MDIO_READ) | XGE_MDIO_ADDR(port) | XGE_MDIO_MMD(device);
// Start MDIO bus transaction
xge_regs->mdio_control = 1;
// Wait until bus transaction complete
while (xge_regs->mdio_control == 1);
// Read MDIO data
return(xge_regs->mdio_data);
}
static void
xge_write_mdio(const uint32_t base, const uint32_t address, const uint32_t device, const uint32_t port, const uint32_t data)
{
// Set register address each iteration
xge_regs->mdio_addr = address;
// Its a clause 45 device. We want to ADDRESS
xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE45) | XGE_MDIO_OP(MDIO_ADDRESS) | XGE_MDIO_ADDR(port) | XGE_MDIO_MMD(device);
// Start MDIO bus transaction
xge_regs->mdio_control = 1;
// Wait until bus transaction complete
while (xge_regs->mdio_control == 1);
// Write new value to mdio_write_data reg.
xge_regs->mdio_data = data;
// Its a clause 45 device. We want to WRITE
xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE45) | XGE_MDIO_OP(MDIO_WRITE) | XGE_MDIO_ADDR(port) | XGE_MDIO_MMD(device);
// Start MDIO bus transaction
xge_regs->mdio_control = 1;
// Wait until bus transaction complete
while (xge_regs->mdio_control == 1);
}
////////////////////////////////////////////////////////////////////////
//
// Clause 22 MDIO used for 1Gig Ethernet has one bus transaction to complete a transfer.
//
static uint32_t
ge_read_mdio(const uint32_t base, const uint32_t address, const uint32_t port)
{
// Its a clause 22 device. We want to READ
xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE22) | XGE_MDIO_OP(MDIO_C22_READ) | XGE_MDIO_ADDR(port) | address;
// Start MDIO bus transaction
xge_regs->mdio_control = 1;
// Wait until bus transaction complete
while (xge_regs->mdio_control == 1);
// Read MDIO data
return(xge_regs->mdio_data);
}
static void
ge_write_mdio(const uint32_t base, const uint32_t address, const uint32_t port, const uint32_t data)
{
// Write new value to mdio_write_data reg.
xge_regs->mdio_data = data;
// Its a clause 22 device. We want to WRITE
xge_regs->mdio_op = XGE_MDIO_CLAUSE(CLAUSE22) | XGE_MDIO_OP(MDIO_C22_WRITE) | XGE_MDIO_ADDR(port) | address;
// Start MDIO bus transaction
xge_regs->mdio_control = 1;
// Wait until bus transaction complete
while (xge_regs->mdio_control == 1);
}
////////////////////////////////////////////////////////////////////////
//
// Read and write MDIO independent of type
//
static uint32_t read_mdio(const uint8_t eth, const uint32_t address, const uint32_t device, const uint32_t port)
{
const uint32_t rb_addr = (eth==0) ? RB_SFP0_TYPE : RB_SFP1_TYPE;
const uint32_t base = (eth==0) ? SFP0_MAC_BASE : SFP1_MAC_BASE;
if (wb_peek32(SR_ADDR(RB0_BASE, rb_addr)) != 0)
{
return xge_read_mdio(base, address, device, port);
}
else
{
return ge_read_mdio(base, address, port);
}
}
static void write_mdio(const uint8_t eth, const uint32_t address, const uint32_t device, const uint32_t port, const uint32_t data)
{
const uint32_t rb_addr = (eth==0) ? RB_SFP0_TYPE : RB_SFP1_TYPE;
const uint32_t base = (eth==0) ? SFP0_MAC_BASE : SFP1_MAC_BASE;
if (wb_peek32(SR_ADDR(RB0_BASE, rb_addr)) != 0)
{
return xge_write_mdio(base, address, device, port, data);
}
else
{
return ge_write_mdio(base, address, port, data);
}
}
////////////////////////////////////////////////////////////////////////
//
// Read an 8-bit word from a device attached to the PHY's i2c bus.
//
static int
xge_i2c_rd(const uint32_t base, const uint8_t i2c_dev_addr, const uint8_t i2c_word_addr)
{
uint8_t buf;
// IJB. CHECK HERE FOR MODET. Bail immediately if no module
// SFF-8472 defines a hardcoded bus address of 0xA0, an 8bit internal address and a register map.
// Write the random access address to the SPF module
if (wb_i2c_write(base, i2c_dev_addr, &i2c_word_addr, 1) == false)
return(-1);
// Now read back a byte of data
if (wb_i2c_read(base, i2c_dev_addr, &buf, 1) == false)
return(-1);
return((int) buf);
}
////////////////////////////////////////////////////////////////////////
//
// Read identity of SFP+ module for XGE PHY
//
// (base is i2c controller)
static int
xge_read_sfpp_type(const uint32_t base, const uint32_t delay_ms)
{
int x;
// Delay read of SFPP
if (delay_ms)
sleep_ms(delay_ms);
// Read ID code from SFP
x = xge_i2c_rd(base, MODULE_DEV_ADDR, 3);
// I2C Error?
if (x < 0) {
UHD_FW_TRACE(ERROR, "I2C error in SFPP_TYPE.");
return x;
}
// Decode module type. These registers and values are defined in SFF-8472
if (x & 0x01) // Active 1X Infinband Copper
{
goto twinax;
}
if (x & 0x10)
{
UHD_FW_TRACE(DEBUG, "SFFP_TYPE_SR.");
return SFFP_TYPE_SR;
}
if (x & 0x20)
{
UHD_FW_TRACE(DEBUG, "SFFP_TYPE_LR.");
return SFFP_TYPE_LR;
}
if (x & 0x40)
{
UHD_FW_TRACE(DEBUG, "SFFP_TYPE_LRM.");
return SFFP_TYPE_LRM;
}
// Search for legacy 1000-Base SFP types
x = xge_i2c_rd(base, MODULE_DEV_ADDR, 0x6);
if (x < 0) {
UHD_FW_TRACE(ERROR, "I2C error in SFPP_TYPE.");
return x;
}
if (x & 0x01) {
UHD_FW_TRACE(DEBUG, "SFFP_TYPE_1000BASE_SX.");
return SFFP_TYPE_1000BASE_SX;
}
if (x & 0x02) {
UHD_FW_TRACE(DEBUG, "SFFP_TYPE_1000BASE_LX.");
return SFFP_TYPE_1000BASE_LX;
}
if (x & 0x08) {
UHD_FW_TRACE(DEBUG, "SFFP_TYPE_1000BASE_T.");
return SFFP_TYPE_1000BASE_T;
}
// Not one of the standard optical types..now try to deduce if it's twinax aka 10GSFP+CU
// which is not covered explicitly in SFF-8472
x = xge_i2c_rd(base, MODULE_DEV_ADDR, 8);
if (x < 0) {
UHD_FW_TRACE(ERROR, "I2C error in SFPP_TYPE.");
return x;
}
if ((x & 4) == 0) // Passive SFP+ cable type
goto unknown;
// x = xge_i2c_rd(MODULE_DEV_ADDR, 6);
// UHD_FW_TRACE(DEBUG, "SFP+ reg6 read as %x",x);
// if (x < 0)
// return x;
// if (x != 0x04) // Returns 1000Base-CX as Compliance code
// goto unknown;
x = xge_i2c_rd(base, MODULE_DEV_ADDR, 0xA);
if (x < 0) {
UHD_FW_TRACE(ERROR, "I2C error in SFPP_TYPE.");
return x;
}
if (x & 0x80) {
twinax:
// Reports 1200 MBytes/sec fibre channel speed..close enough to 10G ethernet!
x = xge_i2c_rd(base, MODULE_DEV_ADDR, 0x12);
if (x < 0) {
UHD_FW_TRACE(ERROR, "I2C error in SFPP_TYPE.");
return x;
}
UHD_FW_TRACE(DEBUG, "TwinAx.");
// If cable length support is greater than 10M then pick correct type
return x > 10 ? SFFP_TYPE_TWINAX_LONG : SFFP_TYPE_TWINAX;
}
unknown:
UHD_FW_TRACE(WARN, "Unknown SFP+ type.");
// Not a supported Module type
return SFFP_TYPE_UNKNOWN;
}
static void xge_mac_init(const uint32_t base)
{
UHD_FW_TRACE(DEBUG, "Begining XGE MAC init sequence.");
xge_regs->config = XGE_TX_ENABLE;
}
// base is pointer to XGE MAC on Wishbone.
static void xge_phy_init(const uint8_t eth, const uint32_t mdio_port)
{
int x;
// Read LASI Ctrl register to capture state.
//y = xge_read_mdio(0x9002,XGE_MDIO_DEVICE_PMA,XGE_MDIO_ADDR_PHY_A);
UHD_FW_TRACE(DEBUG, "Begining XGE PHY init sequence.");
// Software reset
x = read_mdio(eth, 0x0, XGE_MDIO_DEVICE_PMA,mdio_port);
x = x | (1 << 15);
write_mdio(eth, 0x0,XGE_MDIO_DEVICE_PMA,mdio_port,x);
uint32_t loopCount = 0;
while(x&(1<<15)) {
x = read_mdio(eth, 0x0,XGE_MDIO_DEVICE_PMA,mdio_port);
if( loopCount++ > 200 ) break; // usually succeeds after 22 or 23 polls
}
}
void update_eth_state(const uint32_t eth, const uint32_t sfp_type)
{
const bool old_link_up = links_up[eth];
const uint32_t status_reg_addr = (eth==0) ? RB_SFP0_STATUS : RB_SFP1_STATUS;
uint32_t sfpp_status = wb_peek32(SR_ADDR(RB0_BASE, status_reg_addr)) & 0xFFFF;
if ((sfpp_status & (SFPP_STATUS_RXLOS|SFPP_STATUS_TXFAULT|SFPP_STATUS_MODABS)) == 0) {
//SFP+ pin state changed. Reinitialize PHY and MAC
if (sfp_type == RB_SFP_10G_ETH) {
xge_mac_init((eth==0) ? SFP0_MAC_BASE : SFP1_MAC_BASE);
xge_phy_init(eth, MDIO_PORT);
} else {
//No-op for 1G
}
int8_t timeout = 100;
bool link_up = false;
do {
if (sfp_type == RB_SFP_10G_ETH) {
link_up = ((read_mdio(eth, XGE_MDIO_STATUS1,XGE_MDIO_DEVICE_PMA,MDIO_PORT)) & (1 << 2)) != 0;
} else {
link_up = ((wb_peek32(SR_ADDR(RB0_BASE, status_reg_addr)) >> 16) & 0x1) != 0;
}
} while (!link_up && timeout-- > 0);
links_up[eth] = link_up;
}
else
{
links_up[eth] = false;
}
if (!old_link_up && links_up[eth]) u3_net_stack_send_arp_request(eth, u3_net_stack_get_ip_addr(eth));
}
void poll_sfpp_status(const uint32_t sfp)
{
uint32_t type = wb_peek32(SR_ADDR(RB0_BASE, (sfp==0) ? RB_SFP0_TYPE : RB_SFP1_TYPE));
uint32_t status = wb_peek32(SR_ADDR(RB0_BASE, (sfp==0) ? RB_SFP0_STATUS : RB_SFP1_STATUS));
if (status & SFPP_STATUS_MODABS_CHG) {
// MODDET has changed state since last checked
if (status & SFPP_STATUS_MODABS) {
// MODDET is high, module currently removed.
UHD_FW_TRACE_FSTR(INFO, "An SFP+ module has been removed from eth port %d.", sfp);
} else {
// MODDET is low, module currently inserted.
// Return status.
UHD_FW_TRACE_FSTR(INFO, "A new SFP+ module has been inserted into eth port %d.", sfp);
if (type == RB_SFP_10G_ETH) {
xge_read_sfpp_type((sfp==0) ? I2C0_BASE : I2C2_BASE,1);
}
}
}
if (status & SFPP_STATUS_RXLOS_CHG) {
UHD_FW_TRACE_FSTR(DEBUG, "SFP%1d RXLOS changed state: %d", sfp, (status & SFPP_STATUS_RXLOS));
}
if (status & SFPP_STATUS_TXFAULT_CHG) {
UHD_FW_TRACE_FSTR(DEBUG, "SFP%1d TXFAULT changed state: %d", sfp, ((status & SFPP_STATUS_TXFAULT) >> 1));
}
if (status & SFPP_STATUS_MODABS_CHG) {
UHD_FW_TRACE_FSTR(DEBUG, "SFP%1d MODABS changed state: %d", sfp, ((status & SFPP_STATUS_MODABS) >> 2));
}
//update the link up status
const bool old_link_up = links_up[sfp];
if (type == RB_SFP_AURORA) {
links_up[sfp] = ((wb_peek32(SR_ADDR(RB0_BASE, (sfp==0) ? RB_SFP0_STATUS : RB_SFP1_STATUS)) >> 16) & 0x1) != 0;
} else {
if ((status & SFPP_STATUS_RXLOS_CHG) ||
(status & SFPP_STATUS_TXFAULT_CHG) ||
(status & SFPP_STATUS_MODABS_CHG))
{
update_eth_state(sfp, type);
}
}
if (old_link_up != links_up[sfp]) {
UHD_FW_TRACE_FSTR(INFO, "The link on SFP port %u is %s", sfp, links_up[sfp]?"up":"down");
}
}
void ethernet_init(const uint32_t sfp)
{
#ifdef UHD_FW_TRACE_LEVEL
uint32_t x = wb_peek32(SR_ADDR(RB0_BASE, (sfp==0) ? RB_SFP0_STATUS : RB_SFP1_STATUS ));
UHD_FW_TRACE_FSTR(DEBUG, "SFP%1d SFP initial state: RXLOS: %d TXFAULT: %d MODABS: %d",
sfp,
(x & SFPP_STATUS_RXLOS),
((x & SFPP_STATUS_TXFAULT) >> 1),
((x & SFPP_STATUS_MODABS) >> 2));
#endif
update_eth_state(sfp, wb_peek32(SR_ADDR(RB0_BASE, (sfp==0) ? RB_SFP0_TYPE : RB_SFP1_TYPE)));
}
//
// Debug code to verbosely read XGE MDIO registers below here.
//
void decode_reg(uint32_t address, uint32_t device, uint32_t data)
{
UHD_FW_TRACE_FSTR(DEBUG,
"[MDIO Register Dump for Addr=%x, Device=%x]\n- Raw Value = %x",
address, device, data);
int x;
switch(address) {
case XGE_MDIO_CONTROL1:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "CONTROL1: %x = ", data);
for (x=15; x >= 0 ; x--)
if ((data & (1 << x)) != 0)
// Bits set.
switch(x) {
case 15: UHD_FW_TRACE_SHORT(DEBUG, "Reset,"); break;
case 14: UHD_FW_TRACE_SHORT(DEBUG, "Loopback,"); break;
case 11: UHD_FW_TRACE_SHORT(DEBUG, "Low Power Mode,"); break;
case 5:case 4:case 3:case 2: UHD_FW_TRACE_SHORT(DEBUG, "RESERVED speed value,"); break;
case 0: UHD_FW_TRACE_SHORT(DEBUG, "PMA loopback,"); break;
} //else
// Bits clear.
//switch (x) {
//case 13: case 6: UHD_FW_TRACE_SHORT(DEBUG, " None 10Gb/s speed set!"); break;
//}
UHD_FW_TRACE_SHORT(DEBUG, " \n");
break;
case XGE_MDIO_STATUS1:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "STATUS1: %x = ", data);
for (x=15; x >= 0 ; x--)
if ((data & (1 << x)) != 0)
// Bits set.
switch(x) {
case 7: UHD_FW_TRACE_SHORT(DEBUG, "Fault Detected,"); break;
case 2: UHD_FW_TRACE_SHORT(DEBUG, "Link is Up,"); break;
case 1: UHD_FW_TRACE_SHORT(DEBUG, "Supports Low Power,"); break;
} else
// Bits Clear
switch(x) {
case 2: UHD_FW_TRACE_SHORT(DEBUG, "Link is Down,"); break;
}
UHD_FW_TRACE_SHORT(DEBUG, " \n");
break;
case XGE_MDIO_SPEED:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "SPEED ABILITY: %x = ", data);
for (x=15; x >= 0 ; x--)
if ((data & (1 << x)) != 0)
// Bits set.
switch(x) {
case 15:case 14:case 13:case 12:case 11:case 10:case 9:
case 8:case 7:case 6:case 5:case 4:case 3:case 2:case 1: UHD_FW_TRACE_SHORT(DEBUG, "RESERVED bits set!,"); break;
case 0: UHD_FW_TRACE_SHORT(DEBUG, "Capable of 10Gb/s,");
} else
// Bits clear.
switch(x) {
case 0: UHD_FW_TRACE_SHORT(DEBUG, "Incapable of 10Gb/s,"); break;
}
UHD_FW_TRACE_SHORT(DEBUG, " \n");
break;
case XGE_MDIO_DEVICES1:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "DEVICES IN PACKAGE: %x = ", data);
for (x=15; x >= 0 ; x--)
if ((data & (1 << x)) != 0)
// Bits set.
switch(x) {
case 7: UHD_FW_TRACE_SHORT(DEBUG, "Auto-Negotiation,"); break;
case 6: UHD_FW_TRACE_SHORT(DEBUG, "TC,"); break;
case 5: UHD_FW_TRACE_SHORT(DEBUG, "DTE XS,"); break;
case 4: UHD_FW_TRACE_SHORT(DEBUG, "PHY XS,"); break;
case 3: UHD_FW_TRACE_SHORT(DEBUG, "PCS,"); break;
case 2: UHD_FW_TRACE_SHORT(DEBUG, "WIS,"); break;
case 1: UHD_FW_TRACE_SHORT(DEBUG, "PMD/PMA,"); break;
case 0: UHD_FW_TRACE_SHORT(DEBUG, "Clause 22 registers,"); break;
}
UHD_FW_TRACE_SHORT(DEBUG, " \n");
break;
case XGE_MDIO_DEVICES2:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "DEVICES IN PACKAGE (cont): %x = ", data);
for (x=15; x >= 0 ; x--)
if ((data & (1 << x)) != 0)
// Bits set.
switch(x) {
case 15: UHD_FW_TRACE_SHORT(DEBUG, "Vendor device 2,"); break;
case 14: UHD_FW_TRACE_SHORT(DEBUG, "Vendor device 1,"); break;
case 13: UHD_FW_TRACE_SHORT(DEBUG, "Clause 22 extension,"); break;
}
UHD_FW_TRACE_SHORT(DEBUG, " \n");
break;
case XGE_MDIO_CONTROL2:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "CONTROL2: %x = ", data);
// PMA/PMD
if (device == XGE_MDIO_DEVICE_PMA)
switch((data & 0xf)) {
case 0xF: UHD_FW_TRACE_SHORT(DEBUG, "10BASE-T,"); break;
case 0xE: UHD_FW_TRACE_SHORT(DEBUG, "100BASE-TX,"); break;
case 0xD: UHD_FW_TRACE_SHORT(DEBUG, "1000BASE-KX,"); break;
case 0xC: UHD_FW_TRACE_SHORT(DEBUG, "1000BASE-T,"); break;
case 0xB: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-KR,"); break;
case 0xA: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-KX4,"); break;
case 0x9: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-T,"); break;
case 0x8: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-LRM,"); break;
case 0x7: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-SR,"); break;
case 0x6: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-LR,"); break;
case 0x5: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-ER,"); break;
case 0x4: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-LX4,"); break;
// case 0x3: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-SW,"); break;
// case 0x2: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-LW,"); break;
// case 0x1: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-EW,"); break;
case 0x0: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-CX4,"); break;
} else if (device == XGE_MDIO_DEVICE_PCS)
// PCS
switch((data & 0x3)) {
case 0x3: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-T PCS,"); break;
case 0x2: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-W PCS,"); break;
case 0x1: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-X PCS,"); break;
case 0x0: UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-R PCS,"); break;
}
UHD_FW_TRACE_SHORT(DEBUG, " \n");
break;
case XGE_MDIO_STATUS2:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "STATUS2: %x = ", data);
for (x=15; x >= 0 ; x--)
if ((data & (1 << x)) != 0)
// Bits set.
switch(x) {
case 15: if ((data & (1 << 14)) == 0) UHD_FW_TRACE_SHORT(DEBUG, "Device responding,"); break;
case 13: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "Able detect a Tx fault,"); break;
case 12: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "Able detect an Rx fault,"); break;
case 11: UHD_FW_TRACE_SHORT(DEBUG, "Fault on Tx path,"); break;
case 10: UHD_FW_TRACE_SHORT(DEBUG, "Fault on Rx path,"); break;
case 9: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "Extended abilities in Reg1.11,"); break;
case 8: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "Able to disable TX,"); break;
case 7: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-SR,"); break;
case 6: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-LR,"); break;
case 5: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-ER,"); break;
case 4: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-LX4,"); break;
case 3: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-SW,"); break;
case 2: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-LW,"); break;
case 1: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "10GBASE-EW,"); break;
case 0: if (device == XGE_MDIO_DEVICE_PMA) UHD_FW_TRACE_SHORT(DEBUG, "loopback,"); break;
}
UHD_FW_TRACE_SHORT(DEBUG, " \n");
break;
case XGE_MDIO_LANESTATUS:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "LANE STATUS: %x = ", data);
for (x=15; x >= 0 ; x--)
if ((data & (1 << x)) != 0)
// Bits set.
switch(x) {
case 12: UHD_FW_TRACE_SHORT(DEBUG, "Lanes aligned,"); break;
case 11: UHD_FW_TRACE_SHORT(DEBUG, "Able to generate test patterns,"); break;
case 3: UHD_FW_TRACE_SHORT(DEBUG, "Lane 3 synced,"); break;
case 2: UHD_FW_TRACE_SHORT(DEBUG, "Lane 2 synced,"); break;
case 1: UHD_FW_TRACE_SHORT(DEBUG, "Lane 1 synced,"); break;
case 0: UHD_FW_TRACE_SHORT(DEBUG, "Lane 0 synced,"); break;
} else
// Bits clear
switch(x) {
case 3: UHD_FW_TRACE_SHORT(DEBUG, "Lane 3 not synced,"); break;
case 2: UHD_FW_TRACE_SHORT(DEBUG, "Lane 2 not synced,"); break;
case 1: UHD_FW_TRACE_SHORT(DEBUG, "Lane 1 not synced,"); break;
case 0: UHD_FW_TRACE_SHORT(DEBUG, "Lane 0 not synced,"); break;
}
UHD_FW_TRACE_SHORT(DEBUG, " \n");
break;
case XILINX_CORE_VERSION:
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "XILINX CORE VERSION: %x ",data);
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "Version: %d.%d ",((data&0xf000)>>12),((data&0xf00)>>8));
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "Patch: %d ",((data&0xE)>>1));
UHD_FW_TRACE_SHORT(DEBUG, " \n");
if (data&0x1) UHD_FW_TRACE(WARN, "Evaluation Version of core");
break;
default:
UHD_FW_TRACE_SHORT(DEBUG, "Register @ address: ");
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "%x",address);
UHD_FW_TRACE_SHORT(DEBUG, " has value: ");
UHD_FW_TRACE_FSTR_SHORT(DEBUG, "%x\n",data);
break;
}
}
void
dump_mdio_regs(const uint8_t eth, uint32_t mdio_port)
{
volatile unsigned int x;
int y;
unsigned int regs_a[9] = {0,1,4,5,6,7,8,32,33};
unsigned int regs_b[10] = {0,1,4,5,6,7,8,10,11,65535};
for (y = 0; y < 10; y++)
{
// Read MDIO data
x = read_mdio(eth,regs_b[y],XGE_MDIO_DEVICE_PMA,mdio_port);
decode_reg(regs_b[y],XGE_MDIO_DEVICE_PMA,x);
}
for (y = 0; y < 9; y++)
{
// Read MDIO data
x = read_mdio(eth,regs_a[y],XGE_MDIO_DEVICE_PCS,mdio_port);
decode_reg(regs_a[y],XGE_MDIO_DEVICE_PCS,x);
}
/* for (y = 0; y < 8; y++) */
/* { */
/* // Read MDIO data */
/* x = xge_read_mdio(base,regs_a[y],XGE_MDIO_DEVICE_PHY_XS,mdio_port); */
/* decode_reg(regs_a[y],XGE_MDIO_DEVICE_PHY_XS,x); */
/* } */
/* for (y = 0; y < 8; y++) */
/* { */
/* // Read MDIO data */
/* x = xge_read_mdio(base,regs_a[y],XGE_MDIO_DEVICE_DTE_XS,mdio_port); */
/* decode_reg(regs_a[y],XGE_MDIO_DEVICE_DTE_XS,x); */
/* } */
}
bool ethernet_get_link_up(const uint32_t eth)
{
return links_up[eth];
}
|