1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module fifo_to_wb
#(parameter PKT_LEN = 16)
(input clk, input reset, input clear,
input [18:0] data_i, input src_rdy_i, output dst_rdy_o,
output [18:0] data_o, output src_rdy_o, input dst_rdy_i,
output reg [15:0] wb_adr_o, output [15:0] wb_dat_mosi, input [15:0] wb_dat_miso,
output [1:0] wb_sel_o, output wb_cyc_o, output wb_stb_o, output wb_we_o, input wb_ack_i,
input [7:0] triggers,
output [31:0] debug0, output [31:0] debug1);
wire [18:0] ctrl_data;
reg [18:0] resp_data;
wire ctrl_src_rdy, ctrl_dst_rdy, resp_src_rdy, resp_dst_rdy;
fifo_short #(.WIDTH(19)) ctrl_sfifo
(.clk(clk), .reset(reset), .clear(clear),
.datain(data_i), .src_rdy_i(src_rdy_i), .dst_rdy_o(dst_rdy_o),
.dataout(ctrl_data), .src_rdy_o(ctrl_src_rdy), .dst_rdy_i(ctrl_dst_rdy));
fifo_short #(.WIDTH(19)) resp_sfifo
(.clk(clk), .reset(reset), .clear(clear),
.datain(resp_data), .src_rdy_i(resp_src_rdy), .dst_rdy_o(resp_dst_rdy),
.dataout(data_o), .src_rdy_o(src_rdy_o), .dst_rdy_i(dst_rdy_i));
// Need a programmable state machine here. The program is the fifo contents.
// All words are 16 bits wide
// Word 0 Command { Read, Write, Triggers[5:0], Seqno [7:0] }
// Word 1 Length
// Word 2 Address LSW
// Word 3 Address MSW (should all be 0)
localparam RESP_IDLE = 0;
localparam RESP_LEN = 1;
localparam RESP_ADDR_LSW = 2;
localparam RESP_ADDR_MSW = 3;
localparam RESP_WRITE = 4;
localparam RESP_DUMP = 5;
localparam RESP_WAIT_READ = 6;
localparam RESP_RCMD = 7;
localparam RESP_RLEN = 8;
localparam RESP_RADDR_LSW = 9;
localparam RESP_RADDR_MSW = 10;
localparam RESP_READ = 11;
reg [3:0] resp_state;
reg rd, wr;
reg [15:0] base_addr;
reg [15:0] length;
reg [15:0] count;
reg [7:0] seqnum;
reg [5:0] which_trig;
always @(posedge clk)
if(reset | clear)
resp_state <= RESP_IDLE;
else
case(resp_state)
RESP_IDLE :
if(ctrl_src_rdy)
begin
{ rd, wr, which_trig[5:0], seqnum[7:0] } <= ctrl_data[15:0];
if(ctrl_data[16]) // WAIT for start of packet, clean out otherwise
resp_state <= RESP_LEN;
end
RESP_LEN :
if(ctrl_src_rdy)
begin
length <= ctrl_data[15:0];
count <= ctrl_data[15:0];
resp_state <= RESP_ADDR_LSW;
end
RESP_ADDR_LSW :
if(ctrl_src_rdy)
begin
base_addr <= ctrl_data[15:0];
wb_adr_o <= ctrl_data[15:0];
resp_state <= RESP_ADDR_MSW;
end
RESP_ADDR_MSW :
if(ctrl_src_rdy)
if(wr)
resp_state <= RESP_WRITE;
else
resp_state <= RESP_DUMP;
RESP_WRITE :
if(ctrl_src_rdy & wb_ack_i)
if(count==1)
if(ctrl_data[17]) //eof
resp_state <= RESP_IDLE;
else // clean out padding
resp_state <= RESP_DUMP;
else
begin
wb_adr_o <= wb_adr_o + 2;
count <= count - 1;
end
RESP_DUMP :
if(ctrl_src_rdy & ctrl_data[17])
if(rd)
resp_state <= RESP_WAIT_READ;
else
resp_state <= RESP_IDLE;
RESP_WAIT_READ :
begin
wb_adr_o <= base_addr;
count <= length;
if( &(triggers | ~which_trig) )
resp_state <= RESP_RCMD;
end
RESP_RCMD :
if(resp_dst_rdy)
resp_state <= RESP_RLEN;
RESP_RLEN :
if(resp_dst_rdy)
resp_state <= RESP_RADDR_LSW;
RESP_RADDR_LSW :
if(resp_dst_rdy)
resp_state <= RESP_RADDR_MSW;
RESP_RADDR_MSW :
if(resp_dst_rdy)
resp_state <= RESP_READ;
RESP_READ :
if(resp_dst_rdy & wb_ack_i)
if(count==1)
resp_state <= RESP_IDLE;
else
begin
wb_adr_o <= wb_adr_o + 2;
count <= count - 1;
end
endcase // case (resp_state)
always @*
case(resp_state)
RESP_RCMD : resp_data <= { 3'b001, 8'hAA, seqnum };
RESP_RLEN : resp_data <= { 3'b000, length };
RESP_RADDR_LSW : resp_data <= { 3'b000, base_addr };
RESP_RADDR_MSW : resp_data <= { 3'b000, 16'd0 };
default : resp_data <= { 1'b0, (count==1), 1'b0, wb_dat_miso };
endcase // case (resp_state)
assign ctrl_dst_rdy = (resp_state == RESP_IDLE) |
(resp_state == RESP_LEN) |
(resp_state == RESP_ADDR_LSW) |
(resp_state == RESP_ADDR_MSW) |
((resp_state == RESP_WRITE) & wb_ack_i) |
(resp_state == RESP_DUMP);
assign resp_src_rdy = (resp_state == RESP_RCMD) |
(resp_state == RESP_RLEN) |
(resp_state == RESP_RADDR_LSW) |
(resp_state == RESP_RADDR_MSW) |
((resp_state == RESP_READ) & wb_ack_i);
assign wb_dat_mosi = ctrl_data[15:0];
assign wb_we_o = (resp_state == RESP_WRITE);
assign wb_cyc_o = wb_stb_o;
assign wb_sel_o = 2'b11;
assign wb_stb_o = (ctrl_src_rdy & (resp_state == RESP_WRITE)) | (resp_dst_rdy & (resp_state == RESP_READ));
assign debug0 = { 14'd0, ctrl_data[17:0] };
assign debug1 = { ctrl_src_rdy, ctrl_dst_rdy, resp_src_rdy, resp_dst_rdy, 2'b00, ctrl_data[17:16] };
endmodule // fifo_to_wb
|