1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module ram_loader
#(parameter AWIDTH=16, RAM_SIZE=16384)
(
// Wishbone I/F and clock domain
input wb_clk,
input dsp_clk,
input ram_loader_rst,
output wire [31:0] wb_dat,
output wire [AWIDTH-1:0] wb_adr,
output wb_stb,
output reg [3:0] wb_sel,
output wb_we,
output reg ram_loader_done,
// CPLD signals and clock domain
input cpld_clk,
input cpld_din,
output reg cpld_start,
output reg cpld_mode,
output reg cpld_done,
input cpld_detached
);
localparam S0 = 0;
localparam S1 = 1;
localparam S2 = 2;
localparam S3 = 3;
localparam S4 = 4;
localparam S5 = 5;
localparam S6 = 6;
localparam RESET = 7;
localparam WB_IDLE = 0;
localparam WB_WRITE = 1;
reg [AWIDTH+2:0] count; // 3 LSB's count bits in, the MSB's generate the Wishbone address
reg [6:0] shift_reg;
reg [7:0] data_reg;
reg sampled_clk;
reg sampled_clk_meta;
reg sampled_din;
reg inc_count;
reg load_data_reg;
reg shift;
reg wb_state, wb_next_state;
reg [2:0] state, next_state;
//
// CPLD clock doesn't free run and is approximately 12.5MHz.
// Use 50MHz Wishbone clock to sample it as a signal and avoid having
// an extra clock domain for no reason.
//
always @(posedge dsp_clk or posedge ram_loader_rst)
if (ram_loader_rst)
begin
sampled_clk_meta <= 1'b0;
sampled_clk <= 1'b0;
sampled_din <= 1'b0;
count <= 'h7FFF8; // Initialize so that address will be 0 when first byte fully received.
data_reg <= 0;
shift_reg <= 0;
end
else
begin
sampled_clk_meta <= cpld_clk;
sampled_clk <= sampled_clk_meta;
sampled_din <= cpld_din;
if (inc_count)
count <= count + 1'b1;
if (load_data_reg)
data_reg <= {shift_reg,sampled_din};
if (shift)
shift_reg <= {shift_reg[5:0],sampled_din};
end // else: !if(ram_loader_rst)
always @(posedge dsp_clk or posedge ram_loader_rst)
if (ram_loader_rst)
state <= RESET;
else
state <= next_state;
always @*
begin
// Defaults
next_state = state;
cpld_start = 1'b0;
shift = 1'b0;
inc_count = 0;
load_data_reg = 1'b0;
ram_loader_done = 1'b0;
cpld_mode = 1'b0;
cpld_done = 1'b1;
case (state) //synthesis parallel_case full_case
// After reset wait until CPLD indicates its detached.
RESET: begin
if (cpld_detached)
next_state = S0;
else
next_state = RESET;
end
// Assert cpld_start to signal the CPLD its to start sending serial clock and data.
// Assume cpld_clk is low as we transition into search for first rising edge
S0: begin
cpld_start = 1'b1;
cpld_done = 1'b0;
if (~cpld_detached)
next_state = S2;
else
next_state = S0;
end
//
S1: begin
cpld_start = 1'b1;
cpld_done = 1'b0;
if (sampled_clk)
begin
// Found rising edge on cpld_clk.
if (count[2:0] == 3'b111)
// Its the last bit of a byte, send it out to the Wishbone bus.
begin
load_data_reg = 1'b1;
inc_count = 1'b1;
end
else
// Shift databit into LSB of shift register and increment count
begin
shift = 1'b1;
inc_count = 1'b1;
end // else: !if(count[2:0] == 3'b111)
next_state = S2;
end // if (sampled_clk)
else
next_state = S1;
end // case: S1
//
S2: begin
cpld_start = 1'b1;
cpld_done = 1'b0;
if (~sampled_clk)
// Found negative edge of clock
if (count[AWIDTH+2:3] == RAM_SIZE-1) // NOTE need to change this constant
// All firmware now downloaded
next_state = S3;
else
next_state = S1;
else
next_state = S2;
end // case: S2
// Now that terminal count is reached and all firmware is downloaded signal CPLD that download is done
// and that mode is now SPI mode.
S3: begin
if (sampled_clk)
begin
cpld_mode = 1'b1;
cpld_done = 1'b1;
next_state = S4;
end
else
next_state = S3;
end
// Search for negedge of cpld_clk whilst keeping done sequence asserted.
// Keep done assserted
S4: begin
cpld_mode = 1'b1;
cpld_done = 1'b1;
if (~sampled_clk)
next_state = S5;
else
next_state = S4;
end
// Search for posedge of cpld_clk whilst keeping done sequence asserted.
S5: begin
cpld_mode = 1'b1;
cpld_done = 1'b1;
if (sampled_clk)
next_state = S6;
else
next_state = S5;
end
// Stay in this state until reset/power down
S6: begin
ram_loader_done = 1'b1;
cpld_done = 1'b1;
cpld_mode = 1'b1;
next_state = S6;
end
endcase // case(state)
end
always @(posedge dsp_clk or posedge ram_loader_rst)
if (ram_loader_rst)
wb_state <= WB_IDLE;
else
wb_state <= wb_next_state;
reg do_write;
wire empty, full;
always @*
begin
wb_next_state = wb_state;
do_write = 1'b0;
case (wb_state) //synthesis full_case parallel_case
//
WB_IDLE: begin
if (load_data_reg)
// Data reg will load ready to write wishbone @ next clock edge
wb_next_state = WB_WRITE;
else
wb_next_state = WB_IDLE;
end
// Drive address and data onto wishbone.
WB_WRITE: begin
do_write = 1'b1;
if (~full)
wb_next_state = WB_IDLE;
else
wb_next_state = WB_WRITE;
end
endcase // case(wb_state)
end // always @ *
wire [1:0] count_out;
wire [7:0] data_out;
fifo_xlnx_16x40_2clk crossclk
(.rst(ram_loader_rst),
.wr_clk(dsp_clk), .din({count[4:3],count[AWIDTH+2:3],data_reg}), .wr_en(do_write), .full(full),
.rd_clk(wb_clk), .dout({count_out,wb_adr,data_out}), .rd_en(~empty), .empty(empty));
assign wb_dat = {4{data_out}};
always @*
case(count_out[1:0]) //synthesis parallel_case full_case
2'b00 : wb_sel = 4'b1000;
2'b01 : wb_sel = 4'b0100;
2'b10 : wb_sel = 4'b0010;
2'b11 : wb_sel = 4'b0001;
endcase
assign wb_we = ~empty;
assign wb_stb = ~empty;
endmodule // ram_loader
|