1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Tested against an IDT 71v65603s150 in simulation and a Cypress 7C1356C in the real world.
module nobl_if
#(parameter WIDTH=18,DEPTH=19)
(
input clk,
input rst,
input [WIDTH-1:0] RAM_D_pi,
output [WIDTH-1:0] RAM_D_po,
output reg RAM_D_poe,
output [DEPTH-1:0] RAM_A,
output reg RAM_WEn,
output RAM_CENn,
output RAM_LDn,
output RAM_OEn,
output reg RAM_CE1n,
input [DEPTH-1:0] address,
input [WIDTH-1:0] data_out,
output reg [WIDTH-1:0] data_in,
output reg data_in_valid,
input write,
input enable
);
reg enable_pipe1;
reg [DEPTH-1:0] address_pipe1;
reg write_pipe1;
reg [WIDTH-1:0] data_out_pipe1;
reg enable_pipe2;
reg write_pipe2;
reg [WIDTH-1:0] data_out_pipe2;
reg enable_pipe3;
reg write_pipe3;
reg [WIDTH-1:0] data_out_pipe3;
assign RAM_LDn = 0;
// ZBT/NoBL RAM actually manages its own output enables very well.
assign RAM_OEn = 0;
// gray code the address to reduce EMI
wire [DEPTH-1:0] address_gray;
bin2gray #(.WIDTH(DEPTH)) bin2gray (.bin(address),.gray(address_gray));
//
// Pipeline stage 1
//
always @(posedge clk)
if (rst)
begin
enable_pipe1 <= 0;
address_pipe1 <= 0;
write_pipe1 <= 0;
data_out_pipe1 <= 0;
RAM_WEn <= 1;
RAM_CE1n <= 1;
end
else
begin
enable_pipe1 <= enable;
RAM_CE1n <= ~enable; // Creates IOB flop
RAM_WEn <= ~write; // Creates IOB flop
if (enable)
begin
address_pipe1 <= address_gray;
write_pipe1 <= write;
// RAM_WEn <= ~write; // Creates IOB flop
if (write)
data_out_pipe1 <= data_out;
end
end // always @ (posedge clk)
// Pipeline 1 drives address, write_enable, chip_select on NoBL SRAM
assign RAM_A = address_pipe1;
assign RAM_CENn = 1'b0;
// assign RAM_WEn = ~write_pipe1;
// assign RAM_CE1n = ~enable_pipe1;
//
// Pipeline stage2
//
always @(posedge clk)
if (rst)
begin
enable_pipe2 <= 0;
data_out_pipe2 <= 0;
write_pipe2 <= 0;
end
else
begin
data_out_pipe2 <= data_out_pipe1;
write_pipe2 <= write_pipe1;
enable_pipe2 <= enable_pipe1;
end
//
// Pipeline stage3
//
always @(posedge clk)
if (rst)
begin
enable_pipe3 <= 0;
data_out_pipe3 <= 0;
write_pipe3 <= 0;
RAM_D_poe <= 0;
end
else
begin
data_out_pipe3 <= data_out_pipe2;
write_pipe3 <= write_pipe2;
enable_pipe3 <= enable_pipe2;
RAM_D_poe <= ~(write_pipe2 & enable_pipe2); // Active low driver enable in Xilinx.
end
// Pipeline 3 drives write data on NoBL SRAM
assign RAM_D_po = data_out_pipe3;
//
// Pipeline stage4
//
always @(posedge clk)
if (rst)
begin
data_in_valid <= 0;
data_in <= 0;
end
else
begin
data_in <= RAM_D_pi;
if (enable_pipe3 & ~write_pipe3)
begin
// Read data now available to be registered.
data_in_valid <= 1'b1;
end
else
data_in_valid <= 1'b0;
end // always @ (posedge clk)
endmodule // nobl_if
|