1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// FIFO Interface to the 2K buffer RAMs
// Read port is read-acknowledge
// FIXME do we want to be able to interleave reads and writes?
module buffer_int2
#(parameter BASE = 0,
parameter BUF_SIZE = 9)
(input clk, input rst,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
output [31:0] status,
// Wishbone interface to RAM
input wb_clk_i,
input wb_rst_i,
input wb_we_i,
input wb_stb_i,
input [15:0] wb_adr_i,
input [31:0] wb_dat_i,
output [31:0] wb_dat_o,
output reg wb_ack_o,
// Write FIFO Interface
input [35:0] wr_data_i,
input wr_ready_i,
output wr_ready_o,
// Read FIFO Interface
output [35:0] rd_data_o,
output rd_ready_o,
input rd_ready_i
);
reg [15:0] rd_addr, wr_addr; // Handle pkt bigger than buffer
wire [15:0] rd_addr_next = rd_addr + 1;
reg [15:0] rd_length;
wire [31:0] ctrl;
wire wr_done, wr_error, wr_idle;
wire rd_done, rd_error, rd_idle;
wire we, en, go;
wire read = ctrl[3];
wire rd_clear = ctrl[2];
wire write = ctrl[1];
wire wr_clear = ctrl[0];
reg [2:0] rd_state, wr_state;
reg rd_sop, rd_eop;
wire wr_sop, wr_eop;
reg [1:0] rd_occ;
wire [1:0] wr_occ;
localparam IDLE = 3'd0;
localparam PRE_READ = 3'd1;
localparam READING = 3'd2;
localparam WRITING = 3'd3;
localparam ERROR = 3'd4;
localparam DONE = 3'd5;
// read state machine
always @(posedge clk)
if(rst | (rd_clear & go))
begin
rd_state <= IDLE;
rd_sop <= 0;
rd_eop <= 0;
rd_occ <= 0;
end
else
case(rd_state)
IDLE :
if(go & read)
begin
rd_addr <= 0;
rd_state <= PRE_READ;
rd_length <= ctrl[31:16];
end
PRE_READ :
begin
rd_state <= READING;
rd_addr <= rd_addr_next;
rd_occ <= 2'b00;
rd_sop <= 1;
rd_eop <= 0;
end
READING :
if(rd_ready_i)
begin
rd_sop <= 0;
rd_addr <= rd_addr_next;
if(rd_addr_next == rd_length)
begin
rd_eop <= 1;
// FIXME assign occ here
rd_occ <= 0;
end
else
rd_eop <= 0;
if(rd_eop)
rd_state <= DONE;
end
endcase // case(rd_state)
// write state machine
always @(posedge clk)
if(rst | (wr_clear & go))
wr_state <= IDLE;
else
case(wr_state)
IDLE :
if(go & write)
begin
wr_addr <= 0;
wr_state <= WRITING;
end
WRITING :
if(wr_ready_i)
begin
wr_addr <= wr_addr + 1;
if(wr_sop & wr_eop)
wr_state <= ERROR; // Should save OCC flags here
else if(wr_eop)
wr_state <= DONE;
end // if (wr_ready_i)
endcase // case(wr_state)
assign rd_data_o[35:32] = { rd_occ[1:0], rd_eop, rd_sop };
assign rd_ready_o = (rd_state == READING);
assign wr_sop = wr_data_i[32];
assign wr_eop = wr_data_i[33];
assign wr_occ = wr_data_i[35:34];
assign wr_ready_o = (wr_state == WRITING);
assign we = (wr_state == WRITING); // always write to avoid timing issue
assign en = ~((rd_state==READING)& ~rd_ready_i); // FIXME potential critical path
assign rd_done = (rd_state == DONE);
assign wr_done = (wr_state == DONE);
assign rd_error = (rd_state == ERROR);
assign wr_error = (wr_state == ERROR);
assign rd_idle = (rd_state == IDLE);
assign wr_idle = (wr_state == IDLE);
wire [BUF_SIZE-1:0] wr_addr_clip = (|wr_addr[15:BUF_SIZE]) ? {BUF_SIZE{1'b1}} : wr_addr[BUF_SIZE-1:0];
ram_2port #(.DWIDTH(32),.AWIDTH(BUF_SIZE)) buffer_in // CPU reads here
(.clka(wb_clk_i),.ena(wb_stb_i),.wea(1'b0),
.addra(wb_adr_i[BUF_SIZE+1:2]),.dia(0),.doa(wb_dat_o),
.clkb(clk),.enb(1'b1),.web(we),
.addrb(wr_addr_clip),.dib(wr_data_i[31:0]),.dob());
ram_2port #(.DWIDTH(32),.AWIDTH(BUF_SIZE)) buffer_out // CPU writes here
(.clka(wb_clk_i),.ena(wb_stb_i),.wea(wb_we_i),
.addra(wb_adr_i[BUF_SIZE+1:2]),.dia(wb_dat_i),.doa(),
.clkb(clk),.enb(en),.web(1'b0),
.addrb(rd_addr[BUF_SIZE-1:0]),.dib(0),.dob(rd_data_o[31:0]));
always @(posedge wb_clk_i)
if(wb_rst_i)
wb_ack_o <= 0;
else
wb_ack_o <= wb_stb_i & ~wb_ack_o;
setting_reg #(.my_addr(BASE))
sreg(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),.in(set_data),
.out(ctrl),.changed(go));
assign status = { wr_addr,
8'b0,1'b0,rd_idle,rd_error,rd_done, 1'b0,wr_idle,wr_error,wr_done};
endmodule // buffer_int2
|