1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
// GPMC to FIFO
//
// Reads frames from BRAM pages and writes them into FIFO interface.
// The GPMC is asynchronously alerted when a BRAM page is available.
//
// EM_CLK:
// A GPMC write transaction consists of one EM_CLK cycle (idle low).
//
// EM_WE:
// Write enable is actually the combination of ~NWE & ~NCS.
// The write enable is active for the entire transaction.
//
// EM_D:
// Data is set on the rising edge and written into BRAM on the falling edge.
//
// EM_A:
// Address is set on the rising edge and read by BRAM on the falling edge.
////////////////////////////////////////////////////////////////////////
module gpmc_to_fifo
#(parameter PTR_WIDTH = 2, parameter ADDR_WIDTH = 10, parameter LAST_ADDR = 10'h3ff)
(input [15:0] EM_D, input [ADDR_WIDTH:1] EM_A, input EM_CLK, input EM_WE,
input clk, input reset, input clear, input arst,
output [17:0] data_o, output src_rdy_o, input dst_rdy_i,
output reg have_space);
//states for the GPMC side of things
reg gpmc_state;
reg [ADDR_WIDTH:1] addr;
reg [PTR_WIDTH:0] gpmc_ptr, next_gpmc_ptr;
localparam GPMC_STATE_START = 0;
localparam GPMC_STATE_FILL = 1;
//states for the FIFO side of things
reg [1:0] fifo_state;
reg [ADDR_WIDTH-1:0] counter;
reg [ADDR_WIDTH-1:0] last_counter;
reg [ADDR_WIDTH-1:0] last_xfer;
reg [PTR_WIDTH:0] fifo_ptr;
localparam FIFO_STATE_CLAIM = 0;
localparam FIFO_STATE_EMPTY = 1;
localparam FIFO_STATE_PRE = 2;
//------------------------------------------------------------------
// State machine to control the data from GPMC to BRAM
//------------------------------------------------------------------
always @(negedge EM_CLK or posedge arst) begin
if (arst) begin
gpmc_state <= GPMC_STATE_START;
gpmc_ptr <= 0;
next_gpmc_ptr <= 0;
addr <= 0;
end
else if (EM_WE) begin
addr <= EM_A + 1;
case(gpmc_state)
GPMC_STATE_START: begin
if (EM_A == 0) begin
gpmc_state <= GPMC_STATE_FILL;
next_gpmc_ptr <= gpmc_ptr + 1;
end
end
GPMC_STATE_FILL: begin
if (addr == LAST_ADDR) begin
gpmc_state <= GPMC_STATE_START;
gpmc_ptr <= next_gpmc_ptr;
addr <= 0;
end
end
endcase //gpmc_state
end //EM_WE
end //always
//------------------------------------------------------------------
// A block ram is available to empty when the pointers dont match.
//------------------------------------------------------------------
wire [PTR_WIDTH:0] safe_gpmc_ptr;
cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_gpmc_ptr
(.clk(clk), .rst(reset | clear), .in(gpmc_ptr), .out(safe_gpmc_ptr));
wire bram_available_to_empty = safe_gpmc_ptr != fifo_ptr;
//------------------------------------------------------------------
// Glich free generation of have space signal:
// High when the fifo pointer has not caught up to the gpmc pointer.
//------------------------------------------------------------------
wire [PTR_WIDTH:0] safe_next_gpmc_ptr;
cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_next_gpmc_ptr
(.clk(clk), .rst(reset | clear), .in(next_gpmc_ptr), .out(safe_next_gpmc_ptr));
wire [PTR_WIDTH:0] fifo_ptr_next = fifo_ptr + 1;
always @(posedge clk)
if (reset | clear) have_space <= 0;
else have_space <= (fifo_ptr ^ (1 << PTR_WIDTH)) != safe_next_gpmc_ptr;
//------------------------------------------------------------------
// State machine to control the data from BRAM to FIFO
//------------------------------------------------------------------
always @(posedge clk) begin
if (reset | clear) begin
fifo_state <= FIFO_STATE_CLAIM;
fifo_ptr <= 0;
counter <= 0;
end
else begin
case(fifo_state)
FIFO_STATE_CLAIM: begin
if (bram_available_to_empty && data_o[16]) fifo_state <= FIFO_STATE_PRE;
counter <= 0;
end
FIFO_STATE_PRE: begin
fifo_state <= FIFO_STATE_EMPTY;
counter <= counter + 1;
end
FIFO_STATE_EMPTY: begin
if (src_rdy_o && dst_rdy_i && data_o[17]) begin
fifo_state <= FIFO_STATE_CLAIM;
fifo_ptr <= fifo_ptr + 1;
counter <= 0;
end
else if (src_rdy_o && dst_rdy_i) begin
counter <= counter + 1;
end
end
endcase //fifo_state
end
end //always
wire enable = (fifo_state != FIFO_STATE_EMPTY) || dst_rdy_i;
assign src_rdy_o = fifo_state == FIFO_STATE_EMPTY;
//instantiate dual ported bram for async read + write
ram_2port #(.DWIDTH(16),.AWIDTH(PTR_WIDTH + ADDR_WIDTH)) async_fifo_bram
(.clka(~EM_CLK),.ena(1'b1),.wea(EM_WE),
.addra({gpmc_ptr[PTR_WIDTH-1:0], addr}),.dia(EM_D),.doa(),
.clkb(clk),.enb(enable),.web(1'b0),
.addrb({fifo_ptr[PTR_WIDTH-1:0], counter}),.dib(18'h3ffff),.dob(data_o[15:0]));
//store the vita length -> last xfer count
always @(posedge clk) begin
if (src_rdy_o && dst_rdy_i && data_o[16]) begin
last_xfer <= {data_o[ADDR_WIDTH-2:0], 1'b0};
end
end
//logic for start and end of frame
always @(posedge clk) if (enable) last_counter <= counter;
assign data_o[17] = !data_o[16] && ((last_counter + 1'b1) == last_xfer);
assign data_o[16] = last_counter == 0;
endmodule // gpmc_to_fifo
|