1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
/*
* This is a general recreation of the VHDL ieee.math_real package.
*/
module math_real ;
// Constants for use below and for general reference
// TODO: Bring it out to 12 (or more???) places beyond the decimal?
localparam MATH_E = 2.7182818284;
localparam MATH_1_OVER_E = 0.3678794411;
localparam MATH_PI = 3.1415926536;
localparam MATH_2_PI = 6.2831853071;
localparam MATH_1_OVER_PI = 0.3183098861;
localparam MATH_PI_OVER_2 = 1.5707963267;
localparam MATH_PI_OVER_3 = 1.0471975511;
localparam MATH_PI_OVER_4 = 0.7853981633;
localparam MATH_3_PI_OVER_2 = 4.7123889803;
localparam MATH_LOG_OF_2 = 0.6931471805;
localparam MATH_LOG_OF_10 = 2.3025850929;
localparam MATH_LOG2_OF_E = 1.4426950408;
localparam MATH_LOG10_OF_E = 0.4342944819;
localparam MATH_SQRT_2 = 1.4142135623;
localparam MATH_1_OVER_SQRT_2= 0.7071067811;
localparam MATH_SQRT_PI = 1.7724538509;
localparam MATH_DEG_TO_RAD = 0.0174532925;
localparam MATH_RAD_TO_DEG = 57.2957795130;
// The number of iterations to do for the Taylor series approximations
localparam EXPLOG_ITERATIONS = 19;
localparam COS_ITERATIONS = 8;
/* Conversion Routines */
// Return the sign of a particular number.
function real sign ;
input real x ;
begin
sign = x < 0.0 ? 1.0 : 0.0 ;
end
endfunction
// Return the trunc function of a number
function real trunc ;
input real x ;
begin
trunc = x - mod(x,1.0) ;
end
endfunction
// Return the ceiling function of a number.
function real ceil ;
input real x ;
real retval ;
begin
retval = mod(x,1.0) ;
if( retval != 0.0 && x > 0.0 ) retval = x+1.0 ;
else retval = x ;
ceil = trunc(retval) ;
end
endfunction
// Return the floor function of a number
function real floor ;
input real x ;
real retval ;
begin
retval = mod(x,1.0) ;
if( retval != 0.0 && x < 0.0 ) retval = x - 1.0 ;
else retval = x ;
floor = trunc(retval) ;
end
endfunction
// Return the round function of a number
function real round ;
input real x ;
real retval ;
begin
retval = x > 0.0 ? x + 0.5 : x - 0.5 ;
round = trunc(retval) ;
end
endfunction
// Return the fractional remainder of (x mod m)
function real mod ;
input real x ;
input real m ;
real retval ;
begin
retval = x ;
if( retval > m ) begin
while( retval > m ) begin
retval = retval - m ;
end
end
else begin
while( retval < -m ) begin
retval = retval + m ;
end
end
mod = retval ;
end
endfunction
// Return the max between two real numbers
function real realmax ;
input real x ;
input real y ;
begin
realmax = x > y ? x : y ;
end
endfunction
// Return the min between two real numbers
function real realmin ;
input real x ;
input real y ;
begin
realmin = x > y ? y : x ;
end
endfunction
/* Random Numbers */
// Generate Gaussian distributed variables
function real gaussian ;
input real mean ;
input real var ;
real u1, u2, v1, v2, s ;
begin
s = 1.0 ;
while( s >= 1.0 ) begin
// Two random numbers between 0 and 1
u1 = $random/4294967296.0 + 0.5 ;
u2 = $random/4294967296.0 + 0.5 ;
// Adjust to be between -1,1
v1 = 2*u1-1.0 ;
v2 = 2*u2-1.0 ;
// Polar mag squared
s = (v1*v1 + v2*v2) ;
end
gaussian = mean + sqrt((-2.0*log(s))/s) * v1 * sqrt(var) ;
// gaussian2 = mean + sqrt(-2*log(s)/s)*v2 * sqrt(var) ;
end
endfunction
/* Roots and Log Functions */
// Return the square root of a number
function real sqrt ;
input real x ;
real retval ;
begin
sqrt = (x == 0.0) ? 0.0 : powr(x,0.5) ;
end
endfunction
// Return the cube root of a number
function real cbrt ;
input real x ;
real retval ;
begin
cbrt = (x == 0.0) ? 0.0 : powr(x,1.0/3.0) ;
end
endfunction
// Return the absolute value of a real value
function real abs ;
input real x ;
begin
abs = (x > 0.0) ? x : -x ;
end
endfunction
// Return a real value raised to an integer power
function real pow ;
input real b ;
input integer x ;
integer absx ;
real retval ;
begin
retval = 1.0 ;
absx = abs(x) ;
repeat(absx) begin
retval = b*retval ;
end
pow = x < 0 ? (1.0/retval) : retval ;
end
endfunction
// Return a real value raised to a real power
function real powr ;
input real b ;
input real x ;
begin
powr = exp(x*log(b)) ;
end
endfunction
// Return the evaluation of e^x where e is the natural logarithm base
// NOTE: This is the Taylor series expansion of e^x
function real exp ;
input real x ;
real retval ;
integer i ;
real nm1_fact ;
real powm1 ;
begin
nm1_fact = 1.0 ;
powm1 = 1.0 ;
retval = 1.0 ;
for( i = 1 ; i < EXPLOG_ITERATIONS ; i = i + 1 ) begin
powm1 = x*powm1 ;
nm1_fact = nm1_fact * i ;
retval = retval + powm1/nm1_fact ;
end
exp = retval ;
end
endfunction
// Return the evaluation log(x)
function real log ;
input real x ;
integer i ;
real whole ;
real xm1oxp1 ;
real retval ;
real newx ;
begin
retval = 0.0 ;
whole = 0.0 ;
newx = x ;
while( newx > MATH_E ) begin
whole = whole + 1.0 ;
newx = newx / MATH_E ;
end
xm1oxp1 = (newx-1.0)/(newx+1.0) ;
for( i = 0 ; i < EXPLOG_ITERATIONS ; i = i + 1 ) begin
retval = retval + pow(xm1oxp1,2*i+1)/(2.0*i+1.0) ;
end
log = whole+2.0*retval ;
end
endfunction
// Return the evaluation ln(x) (same as log(x))
function real ln ;
input real x ;
begin
ln = log(x) ;
end
endfunction
// Return the evaluation log_2(x)
function real log2 ;
input real x ;
begin
log2 = log(x)/MATH_LOG_OF_2 ;
end
endfunction
function real log10 ;
input real x ;
begin
log10 = log(x)/MATH_LOG_OF_10 ;
end
endfunction
function real log_base ;
input real x ;
input real b ;
begin
log_base = log(x)/log(b) ;
end
endfunction
/* Trigonometric Functions */
// Internal function to reduce a value to be between [-pi:pi]
function real reduce ;
input real x ;
real retval ;
begin
retval = x ;
while( abs(retval) > MATH_PI ) begin
retval = retval > MATH_PI ?
(retval - MATH_2_PI) :
(retval + MATH_2_PI) ;
end
reduce = retval ;
end
endfunction
// Return the cos of a number in radians
function real cos ;
input real x ;
integer i ;
integer sign ;
real newx ;
real retval ;
real xsqnm1 ;
real twonm1fact ;
begin
newx = reduce(x) ;
xsqnm1 = 1.0 ;
twonm1fact = 1.0 ;
retval = 1.0 ;
for( i = 1 ; i < COS_ITERATIONS ; i = i + 1 ) begin
sign = -2*(i % 2)+1 ;
xsqnm1 = xsqnm1*newx*newx ;
twonm1fact = twonm1fact * (2.0*i) * (2.0*i-1.0) ;
retval = retval + sign*(xsqnm1/twonm1fact) ;
end
cos = retval ;
end
endfunction
// Return the sin of a number in radians
function real sin ;
input real x ;
begin
sin = cos(x - MATH_PI_OVER_2) ;
end
endfunction
// Return the tan of a number in radians
function real tan ;
input real x ;
begin
tan = sin(x) / cos(x) ;
end
endfunction
// Return the arcsin in radians of a number
function real arcsin ;
input real x ;
begin
arcsin = 2.0*arctan(x/(1.0+sqrt(1.0-x*x))) ;
end
endfunction
// Return the arccos in radians of a number
function real arccos ;
input real x ;
begin
arccos = MATH_PI_OVER_2-arcsin(x) ;
end
endfunction
// Return the arctan in radians of a number
// TODO: Make sure this REALLY does work as it is supposed to!
function real arctan ;
input real x ;
real retval ;
real y ;
real newx ;
real twoiotwoip1 ;
integer i ;
integer mult ;
begin
retval = 1.0 ;
twoiotwoip1 = 1.0 ;
mult = 1 ;
newx = abs(x) ;
while( newx > 1.0 ) begin
mult = mult*2 ;
newx = newx/(1.0+sqrt(1.0+newx*newx)) ;
end
y = 1.0 ;
for( i = 1 ; i < 2*COS_ITERATIONS ; i = i + 1 ) begin
y = y*((newx*newx)/(1+newx*newx)) ;
twoiotwoip1 = twoiotwoip1 * (2.0*i)/(2.0*i+1.0) ;
retval = retval + twoiotwoip1*y ;
end
retval = retval * (newx/(1+newx*newx)) ;
retval = retval * mult ;
arctan = (x > 0.0) ? retval : -retval ;
end
endfunction
// Return the arctan in radians of a ratio x/y
// TODO: Test to make sure this works as it is supposed to!
function real arctan_xy ;
input real x ;
input real y ;
real retval ;
begin
retval = 0.0 ;
if( x < 0.0 ) retval = MATH_PI - arctan(-abs(y)/x) ;
else if( x > 0.0 ) retval = arctan(abs(y)/x) ;
else if( x == 0.0 ) retval = MATH_PI_OVER_2 ;
arctan_xy = (y < 0.0) ? -retval : retval ;
end
endfunction
/* Hyperbolic Functions */
// Return the sinh of a number
function real sinh ;
input real x ;
begin
sinh = (exp(x) - exp(-x))/2.0 ;
end
endfunction
// Return the cosh of a number
function real cosh ;
input real x ;
begin
cosh = (exp(x) + exp(-x))/2.0 ;
end
endfunction
// Return the tanh of a number
function real tanh ;
input real x ;
real e2x ;
begin
e2x = exp(2.0*x) ;
tanh = (e2x+1.0)/(e2x-1.0) ;
end
endfunction
// Return the arcsinh of a number
function real arcsinh ;
input real x ;
begin
arcsinh = log(x+sqrt(x*x+1.0)) ;
end
endfunction
// Return the arccosh of a number
function real arccosh ;
input real x ;
begin
arccosh = ln(x+sqrt(x*x-1.0)) ;
end
endfunction
// Return the arctanh of a number
function real arctanh ;
input real x ;
begin
arctanh = 0.5*ln((1.0+x)/(1.0-x)) ;
end
endfunction
/*
initial begin
$display( "cos(MATH_PI_OVER_3): %f", cos(MATH_PI_OVER_3) ) ;
$display( "sin(MATH_PI_OVER_3): %f", sin(MATH_PI_OVER_3) ) ;
$display( "sign(-10): %f", sign(-10) ) ;
$display( "realmax(MATH_PI,MATH_E): %f", realmax(MATH_PI,MATH_E) ) ;
$display( "realmin(MATH_PI,MATH_E): %f", realmin(MATH_PI,MATH_E) ) ;
$display( "mod(MATH_PI,MATH_E): %f", mod(MATH_PI,MATH_E) ) ;
$display( "ceil(-MATH_PI): %f", ceil(-MATH_PI) ) ;
$display( "ceil(4.0): %f", ceil(4.0) ) ;
$display( "ceil(3.99999999999999): %f", ceil(3.99999999999999) ) ;
$display( "pow(MATH_PI,2): %f", pow(MATH_PI,2) ) ;
$display( "gaussian(1.0,1.0): %f", gaussian(1.0,1.0) ) ;
$display( "round(MATH_PI): %f", round(MATH_PI) ) ;
$display( "trunc(-MATH_PI): %f", trunc(-MATH_PI) ) ;
$display( "ceil(-MATH_PI): %f", ceil(-MATH_PI) ) ;
$display( "floor(MATH_PI): %f", floor(MATH_PI) ) ;
$display( "round(e): %f", round(MATH_E)) ;
$display( "ceil(-e): %f", ceil(-MATH_E)) ;
$display( "exp(MATH_PI): %f", exp(MATH_PI) ) ;
$display( "log2(MATH_PI): %f", log2(MATH_PI) ) ;
$display( "log_base(pow(2,32),2): %f", log_base(pow(2,32),2) ) ;
$display( "ln(0.1): %f", log(0.1) ) ;
$display( "cbrt(7): %f", cbrt(7) ) ;
$display( "cos(MATH_2_PI): %f", cos(20*MATH_2_PI) ) ;
$display( "sin(-MATH_2_PI): %f", sin(-50*MATH_2_PI) ) ;
$display( "sinh(MATH_E): %f", sinh(MATH_E) ) ;
$display( "cosh(MATH_2_PI): %f", cosh(MATH_2_PI) ) ;
$display( "arctan_xy(-4,3): %f", arctan_xy(-4,3) ) ;
$display( "arctan(MATH_PI): %f", arctan(MATH_PI) ) ;
$display( "arctan(-MATH_E/2): %f", arctan(-MATH_E/2) ) ;
$display( "arctan(MATH_PI_OVER_2): %f", arctan(MATH_PI_OVER_2) ) ;
$display( "arctan(1/7) = %f", arctan(1.0/7.0) ) ;
$display( "arctan(3/79) = %f", arctan(3.0/79.0) ) ;
$display( "pi/4 ?= %f", 5*arctan(1.0/7.0)+2*arctan(3.0/79.0) ) ;
$display( "arcsin(1.0): %f", arcsin(1.0) ) ;
$display( "cos(pi/2): %f", cos(MATH_PI_OVER_2)) ;
$display( "arccos(cos(pi/2)): %f", arccos(cos(MATH_PI_OVER_2)) ) ;
$display( "cos(0): %f", cos(0) ) ;
$display( "cos(MATH_PI_OVER_4): %f", cos(MATH_PI_OVER_4) ) ;
$display( "cos(MATH_PI_OVER_2): %f", cos(MATH_PI_OVER_2) ) ;
$display( "cos(3*MATH_PI_OVER_4): %f", cos(3*MATH_PI_OVER_4) ) ;
$display( "cos(MATH_PI): %f", cos(MATH_PI) ) ;
$display( "cos(5*MATH_PI_OVER_4): %f", cos(5*MATH_PI_OVER_4) ) ;
$display( "cos(6*MATH_PI_OVER_4): %f", cos(6*MATH_PI_OVER_4) ) ;
$display( "cos(7*MATH_PI_OVER_4): %f", cos(7*MATH_PI_OVER_4) ) ;
$display( "cos(8*MATH_PI_OVER_4): %f", cos(8*MATH_PI_OVER_4) ) ;
end*/
endmodule
|