1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module hb_dec_tb( ) ;
// Parameters for instantiation
parameter clocks = 9'd12 ; // Number of clocks per input
parameter decim = 1 ; // Sets the filter to decimate
parameter rate = 2 ; // Sets the decimation rate
reg clock ;
reg reset ;
reg enable ;
reg strobe_in ;
reg signed [23:0] data_in ;
wire strobe_out ;
wire signed [23:0] data_out ;
initial
begin
$dumpfile("hb_dec_tb.vcd");
$dumpvars(0,hb_dec_tb);
end
// Setup the clock
initial clock = 1'b0 ;
always #5 clock <= ~clock ;
// Come out of reset after a while
initial reset = 1'b1 ;
initial #1000 reset = 1'b0 ;
// Enable the entire system
initial enable = 1'b1 ;
// Instantiate UUT
/*
halfband_ideal
#(
.decim ( decim ),
.rate ( rate )
) uut(
.clock ( clock ),
.reset ( reset ),
.enable ( enable ),
.strobe_in ( strobe_in ),
.data_in ( data_in ),
.strobe_out ( strobe_out ),
.data_out ( data_out )
) ;
*/
hb_dec #(.WIDTH(24)) uut
(.clk(clock),.rst(reset),.bypass(0),.run(1),.cpi(clocks),.stb_in(strobe_in),.data_in(data_in),
.stb_out(strobe_out),.data_out(data_out) );
integer i, ri, ro, infile, outfile ;
always @(posedge clock)
begin
if(strobe_out)
$display(data_out);
end
// Setup file IO
initial begin
infile = $fopen("input.dat","r") ;
outfile = $fopen("output.dat","r") ;
$timeformat(-9, 2, " ns", 10) ;
end
reg endofsim ;
reg signed [17:0] compare ;
integer noe ;
initial noe = 0 ;
initial begin
// Initialize inputs
strobe_in <= 1'd0 ;
data_in <= 18'd0 ;
// Wait for reset to go away
@(negedge reset) #0 ;
// While we're still simulating ...
while( !endofsim ) begin
// Write the input from the file or 0 if EOF...
@( posedge clock ) begin
//#1 ;
strobe_in <= 1'b1 ;
if( !$feof(infile) )
ri = $fscanf( infile, "%d", data_in ) ;
else
data_in <= 18'd0 ;
end
// Clocked in - set the strobe to 0 if the number of
// clocks per sample is greater than 1
if( clocks > 1 ) begin
@(posedge clock) begin
strobe_in <= 1'b0 ;
end
// Wait for the specified number of cycles
for( i = 0 ; i < (clocks-2) ; i = i + 1 ) begin
@(posedge clock) #1 ;
end
end
end
// Print out the number of errors that occured
if( noe )
$display( "FAILED: %d errors during simulation", noe ) ;
else
$display( "PASSED: Simulation successful" ) ;
$finish ;
end
// Output comparison of simulated values versus known good values
always @ (posedge clock) begin
if( reset )
endofsim <= 1'b0 ;
else begin
if( !$feof(outfile) ) begin
if( strobe_out ) begin
ro = $fscanf( outfile, "%d\n", compare ) ;
if( compare != data_out ) begin
//$display( "%t: %d != %d", $realtime, data_out, compare ) ;
noe = noe + 1 ;
end
end
end else begin
// Signal end of simulation when no more outputs
endofsim <= 1'b1 ;
end
end
end
endmodule // hb_dec_tb
|