1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// First halfband iterpolator
// Implements impulse responses of the form [A 0 B 0 C .. 0 H 0.5 H 0 .. C 0 B 0 A]
// Strobe in cannot come faster than every 4th clock cycle,
// Strobe out cannot come faster than every 2nd clock cycle
// These taps designed by halfgen4 from ldoolittle
// myfilt = round(2^18 * halfgen4(.7/4,8))
module hb_interp
#(parameter IWIDTH=18, OWIDTH=18, ACCWIDTH=24)
(input clk,
input rst,
input bypass,
input [7:0] cpo, // Clocks per output, must be at least 2
input stb_in,
input [IWIDTH-1:0] data_in,
input stb_out,
output reg [OWIDTH-1:0] data_out);
localparam MWIDTH = ACCWIDTH-2;
localparam CWIDTH = 18;
reg [CWIDTH-1:0] coeff1, coeff2;
reg [3:0] addr_a, addr_b, addr_c, addr_d, addr_e;
wire [IWIDTH-1:0] data_a, data_b, data_c, data_d, data_e, sum1, sum2;
wire [35:0] prod1, prod2;
reg [2:0] phase, phase_d1, phase_d2, phase_d3, phase_d4, phase_d5;
always @(posedge clk)
if(rst)
phase <= 0;
else
if(stb_in)
phase <= 1;
else if(phase==4)
phase <= 0;
else if(phase!=0)
phase <= phase + 1;
always @(posedge clk) phase_d1 <= phase;
always @(posedge clk) phase_d2 <= phase_d1;
always @(posedge clk) phase_d3 <= phase_d2;
always @(posedge clk) phase_d4 <= phase_d3;
always @(posedge clk) phase_d5 <= phase_d4;
srl #(.WIDTH(IWIDTH)) srl_a
(.clk(clk),.write(stb_in),.in(data_in),.addr(addr_a),.out(data_a));
srl #(.WIDTH(IWIDTH)) srl_b
(.clk(clk),.write(stb_in),.in(data_in),.addr(addr_b),.out(data_b));
srl #(.WIDTH(IWIDTH)) srl_c
(.clk(clk),.write(stb_in),.in(data_in),.addr(addr_c),.out(data_c));
srl #(.WIDTH(IWIDTH)) srl_d
(.clk(clk),.write(stb_in),.in(data_in),.addr(addr_d),.out(data_d));
srl #(.WIDTH(IWIDTH)) srl_e
(.clk(clk),.write(stb_in),.in(data_in),.addr(addr_e),.out(data_e));
always @*
case(phase)
1 : begin addr_a = 0; addr_b = 15; end
2 : begin addr_a = 1; addr_b = 14; end
3 : begin addr_a = 2; addr_b = 13; end
4 : begin addr_a = 3; addr_b = 12; end
default : begin addr_a = 0; addr_b = 15; end
endcase // case(phase)
always @*
case(phase)
1 : begin addr_c = 4; addr_d = 11; end
2 : begin addr_c = 5; addr_d = 10; end
3 : begin addr_c = 6; addr_d = 9; end
4 : begin addr_c = 7; addr_d = 8; end
default : begin addr_c = 4; addr_d = 11; end
endcase // case(phase)
always @*
case(cpo)
2 : addr_e <= 9;
3,4,5,6,7,8 : addr_e <= 8;
default : addr_e <= 7; // This case works for 256, which = 0 due to overflow outside this block
endcase // case(cpo)
always @* // Outer coeffs
case(phase_d1)
1 : coeff1 = -107;
2 : coeff1 = 445;
3 : coeff1 = -1271;
4 : coeff1 = 2959;
default : coeff1 = -107;
endcase // case(phase)
always @* // Inner coeffs
case(phase_d1)
1 : coeff2 = -6107;
2 : coeff2 = 11953;
3 : coeff2 = -24706;
4 : coeff2 = 82359;
default : coeff2 = -6107;
endcase // case(phase)
add2_reg /*_and_round_reg*/ #(.WIDTH(IWIDTH)) add1 (.clk(clk),.in1(data_a),.in2(data_b),.sum(sum1));
add2_reg /*_and_round_reg*/ #(.WIDTH(IWIDTH)) add2 (.clk(clk),.in1(data_c),.in2(data_d),.sum(sum2));
// sum1, sum2 available on phase_d1
wire do_mult = 1;
MULT18X18S mult1(.C(clk), .CE(do_mult), .R(rst), .P(prod1), .A(coeff1), .B(sum1) );
MULT18X18S mult2(.C(clk), .CE(do_mult), .R(rst), .P(prod2), .A(coeff2), .B(sum2) );
// prod1, prod2 available on phase_d2
wire [MWIDTH-1:0] sum_of_prod;
add2_and_round_reg #(.WIDTH(MWIDTH))
add3 (.clk(clk),.in1(prod1[35:36-MWIDTH]),.in2(prod2[35:36-MWIDTH]),.sum(sum_of_prod));
// sum_of_prod available on phase_d3
wire [ACCWIDTH-1:0] acc_out;
wire [OWIDTH-1:0] acc_round;
wire clear = (phase_d3 == 1);
wire do_acc = (phase_d3 != 0);
acc #(.IWIDTH(MWIDTH),.OWIDTH(ACCWIDTH))
acc (.clk(clk),.clear(clear),.acc(do_acc),.in(sum_of_prod),.out(acc_out));
// acc_out available on phase_d4
wire [ACCWIDTH-6:0] clipped_acc;
clip #(.bits_in(ACCWIDTH),.bits_out(ACCWIDTH-5)) final_clip(.in(acc_out),.out(clipped_acc));
reg [ACCWIDTH-6:0] clipped_reg;
always @(posedge clk)
if(phase_d4 == 4)
clipped_reg <= clipped_acc;
// clipped_reg available on phase_d5
wire [OWIDTH-1:0] data_out_round;
round #(.bits_in(ACCWIDTH-5),.bits_out(OWIDTH)) final_round (.in(clipped_reg),.out(data_out_round));
reg odd;
always @(posedge clk)
if(rst)
odd <= 0;
else if(stb_in)
odd <= 0;
else if(stb_out)
odd <= 1;
always @(posedge clk)
if(bypass)
data_out <= data_in;
else if(stb_out)
if(odd)
data_out <= data_e;
else
data_out <= data_out_round;
// data_out available on phase_d6
endmodule // hb_interp
|