1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module small_hb_int_tb( ) ;
// Parameters for instantiation
parameter clocks = 8'd1 ; // Number of clocks per output
parameter decim = 1 ; // Sets the filter to decimate
parameter rate = 2 ; // Sets the decimation rate
reg clock ;
reg reset ;
reg enable ;
wire strobe_in ;
reg signed [17:0] data_in ;
wire strobe_out ;
wire signed [17:0] data_out ;
initial
begin
$dumpfile("small_hb_int_tb.vcd");
$dumpvars(0,small_hb_int_tb);
end
// Setup the clock
initial clock = 1'b0 ;
always #5 clock <= ~clock ;
// Come out of reset after a while
initial reset = 1'b1 ;
initial #1000 reset = 1'b0 ;
always @(posedge clock)
enable <= ~reset;
// Instantiate UUT
/*
halfband_ideal
#(
.decim ( decim ),
.rate ( rate )
) uut(
.clock ( clock ),
.reset ( reset ),
.enable ( enable ),
.strobe_in ( strobe_in ),
.data_in ( data_in ),
.strobe_out ( strobe_out ),
.data_out ( data_out )
) ;
*/
cic_strober #(.WIDTH(8))
out_strober(.clock(clock),.reset(reset),.enable(enable),.rate(clocks),
.strobe_fast(1),.strobe_slow(strobe_out) );
cic_strober #(.WIDTH(8))
in_strober(.clock(clock),.reset(reset),.enable(enable),.rate(2),
.strobe_fast(strobe_out),.strobe_slow(strobe_in) );
small_hb_int #(.WIDTH(18)) uut
(.clk(clock),.rst(reset),.bypass(0),.stb_in(strobe_in),.data_in(data_in),
.stb_out(strobe_out),.output_rate(clocks),.data_out(data_out) );
integer i, ri, ro, infile, outfile ;
always @(posedge clock)
begin
if(strobe_out)
$display(data_out);
end
// Setup file IO
initial begin
infile = $fopen("input.dat","r") ;
outfile = $fopen("output.dat","r") ;
$timeformat(-9, 2, " ns", 10) ;
end
reg endofsim ;
reg signed [17:0] compare ;
integer noe ;
initial noe = 0 ;
initial begin
// Initialize inputs
data_in <= 18'd0 ;
// Wait for reset to go away
@(negedge reset) #0 ;
// While we're still simulating ...
while( !endofsim ) begin
// Write the input from the file or 0 if EOF...
@( negedge clock ) begin
if(strobe_in)
if( !$feof(infile) )
ri <= #1 $fscanf( infile, "%d", data_in ) ;
else
data_in <= 18'd0 ;
end
end
// Print out the number of errors that occured
if( noe )
$display( "FAILED: %d errors during simulation", noe ) ;
else
$display( "PASSED: Simulation successful" ) ;
$finish ;
end
// Output comparison of simulated values versus known good values
always @ (posedge clock) begin
if( reset )
endofsim <= 1'b0 ;
else begin
if( !$feof(outfile) ) begin
if( strobe_out ) begin
ro = $fscanf( outfile, "%d\n", compare ) ;
if( compare != data_out ) begin
//$display( "%t: %d != %d", $realtime, data_out, compare ) ;
noe = noe + 1 ;
end
end
end else begin
// Signal end of simulation when no more outputs
if($feof(infile))
endofsim <= 1'b1 ;
end
end
end
endmodule // small_hb_int_tb
|