1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: axi_mux
//
// Description:
//
// Takes arbitrary number of AXI streams and merges them to into a single
// output channel. Bubble cycles are inserted after each packet.
//
// Parameters:
//
// PRIO : Controls the arbitration scheme.
// 0 - Round-robin
// 1 - Priority (lower number ports get priority)
// WIDTH : Width of each AXI-Stream (width of TDATA).
// PRE_FIFO_SIZE : Log2 of the input buffer FIFO. Set to 0 for no FIFO.
// POST_FIFO_SIZE : Log2 of the output buffer FIFO. Set to 0 for no FIFO.
// SIZE : Number of input ports to the multiplexer.
//
`default_nettype none
module axi_mux #(
parameter PRIO = 0,
parameter WIDTH = 64,
parameter PRE_FIFO_SIZE = 0,
parameter POST_FIFO_SIZE = 0,
parameter SIZE = 4
) (
input wire clk,
input wire reset,
input wire clear,
// Input streams
input wire [WIDTH*SIZE-1:0] i_tdata,
input wire [ SIZE-1:0] i_tlast,
input wire [ SIZE-1:0] i_tvalid,
output wire [ SIZE-1:0] i_tready,
// Single output stream
output wire [ WIDTH-1:0] o_tdata,
output wire o_tlast,
output wire o_tvalid,
input wire o_tready
);
wire [WIDTH*SIZE-1:0] i_tdata_int;
wire [ SIZE-1:0] i_tlast_int;
wire [ SIZE-1:0] i_tvalid_int;
wire [ SIZE-1:0] i_tready_int;
wire [WIDTH-1:0] o_tdata_int;
wire o_tlast_int;
wire o_tvalid_int;
wire o_tready_int;
reg [$clog2(SIZE)-1:0] st_port;
reg st_active;
//---------------------------------------------------------------------------
// Input FIFO
//---------------------------------------------------------------------------
genvar n;
generate
if (PRE_FIFO_SIZE == 0) begin : gen_no_pre_fifo
assign i_tdata_int = i_tdata;
assign i_tlast_int = i_tlast;
assign i_tvalid_int = i_tvalid;
assign i_tready = i_tready_int;
end else begin : gen_pre_fifo
for (n = 0; n < SIZE; n = n + 1) begin
axi_fifo #(
.WIDTH(WIDTH+1 ),
.SIZE (PRE_FIFO_SIZE)
) axi_fifo (
.clk (clk ),
.reset (reset ),
.clear (clear ),
.i_tdata ({i_tlast[n],i_tdata[WIDTH*(n+1)-1:WIDTH*n]} ),
.i_tvalid(i_tvalid[n] ),
.i_tready(i_tready[n] ),
.o_tdata ({i_tlast_int[n],i_tdata_int[WIDTH*(n+1)-1:WIDTH*n]}),
.o_tvalid(i_tvalid_int[n] ),
.o_tready(i_tready_int[n] ),
.space ( ),
.occupied( )
);
end
end
endgenerate
//---------------------------------------------------------------------------
// Multiplexer Logic
//---------------------------------------------------------------------------
always @(posedge clk) begin
if (reset) begin
st_port <= 0;
st_active <= 1'b0;
end else begin
if (st_active) begin
if (o_tlast_int & o_tvalid_int & o_tready_int) begin
st_active <= 1'b0;
if ((PRIO != 0) | (st_port == (SIZE-1))) begin
st_port <= 0;
end else begin
st_port <= st_port + 1;
end
end
end else begin
if (i_tvalid_int[st_port]) begin
st_active <= 1'b1;
end else begin
if (st_port == (SIZE-1)) begin
st_port <= 0;
end else begin
st_port <= st_port + 1;
end
end
end
end
end
genvar i;
generate
for (i=0; i<SIZE; i=i+1) begin : gen_tready
assign i_tready_int[i] = st_active & o_tready_int & (st_port == i);
end
endgenerate
assign o_tvalid_int = st_active & i_tvalid_int[st_port];
assign o_tlast_int = i_tlast_int[st_port];
genvar j;
generate
for (j=0; j<WIDTH; j=j+1) begin : gen_tdata
assign o_tdata_int[j] = i_tdata_int[st_port*WIDTH+j];
end
endgenerate
//---------------------------------------------------------------------------
// Output FIFO
//---------------------------------------------------------------------------
generate
if (POST_FIFO_SIZE == 0) begin
assign o_tdata = o_tdata_int;
assign o_tlast = o_tlast_int;
assign o_tvalid = o_tvalid_int;
assign o_tready_int = o_tready;
end else begin
axi_fifo #(
.WIDTH(WIDTH+1 ),
.SIZE (POST_FIFO_SIZE)
) axi_fifo (
.clk (clk ),
.reset (reset ),
.clear (clear ),
.i_tdata ({o_tlast_int,o_tdata_int}),
.i_tvalid(o_tvalid_int ),
.i_tready(o_tready_int ),
.o_tdata ({o_tlast,o_tdata} ),
.o_tvalid(o_tvalid ),
.o_tready(o_tready ),
.space ( ),
.occupied( )
);
end
endgenerate
endmodule
`default_nettype wire
|