1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
//
// Copyright 2016 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: cat_input_lvds
//
// Description:
//
// Receive interface to AD9361 (Catalina) in LVDS mode.
//
// Use Xilinx SERDES to deserialize interleaved sample data off
// half-word-width LVDS differential data bus from the Catalina.
//
// Use FRAME signal to initially synchronize to incoming data after reset
// de-asserts.
//
// In all modes (SISO or MIMO) we output a clock of 1/4 the frequency
// of the Catalina source-synchronous bus clock to be used as the radio_clk.
//
// In SISO mode, every cycle of the radio_clk supplies a new RX sample which
// is routed to both radios, even if only one is actively receiving.
//
// In MIMO mode, every cycle of the radio clock supplies a pair of
// time aligned MIMO samples which are routed to different radios.
//
// The frame_sample signal controls the expected frame signal timing. When
// frame_sample is 0, the period of the ddr_frame signal is expected to equal
// two samples (e.g., one from each channel). When frame_sample is 1, the frame
// period is expected to equal the length of one sample. This allows the module
// to be used for 2R2T (frame_sample = 1) or 1R1T mode (frame_sample = 0).
//
module cat_input_lvds #(
parameter INVERT_FRAME_RX = 0,
parameter INVERT_DATA_RX = 6'b00_0000,
parameter USE_CLOCK_DELAY = 1,
parameter USE_DATA_DELAY = 1,
parameter CLOCK_DELAY_MODE = "VAR_LOAD",
parameter DATA_DELAY_MODE = "VAR_LOAD",
parameter CLOCK_DELAY = 0,
parameter DATA_DELAY = 0,
parameter WIDTH = 6,
parameter GROUP = "DEFAULT",
parameter USE_BUFG = 1
) (
input clk200,
input rst,
// Data and frame timing (synchronous to radio_clk)
input mimo, // Output one channel (MIMO=0) or two (MIMO=1)
input frame_sample, // Two samples per frame period (frame_sample=0) or one sample per frame (frame_sample=1)
// Region local Clocks for I/O cells.
output ddr_clk,
output sdr_clk,
// Source Synchronous external input clock
input ddr_clk_p,
input ddr_clk_n,
// Source Synchronous data lines
input [WIDTH-1:0] ddr_data_p,
input [WIDTH-1:0] ddr_data_n,
input ddr_frame_p,
input ddr_frame_n,
// Delay control interface
input ctrl_clk,
input [4:0] ctrl_data_delay,
input [4:0] ctrl_clk_delay,
input ctrl_ld_data_delay,
input ctrl_ld_clk_delay,
// Global output clocks, ddr_clk/4 & ddr_clk/2
output radio_clk,
output radio_clk_2x,
// SDR Data buses
output reg [(WIDTH*2)-1:0] i0,
output reg [(WIDTH*2)-1:0] q0,
output reg [(WIDTH*2)-1:0] i1,
output reg [(WIDTH*2)-1:0] q1,
output reg rx_aligned
);
//------------------------------------------------------------------
// UG471 says take reset high asynchronously, and de-assert
// synchronized to CLKDIV (sdr_clk) for SERDES.
//------------------------------------------------------------------
(* ASYNC_REG = "TRUE" *) reg rst_sdr_sync, rst_sdr_sync_ms;
always @(posedge sdr_clk or posedge rst)
if (rst) begin
rst_sdr_sync_ms <= 1'b1;
rst_sdr_sync <= 1'b1;
end else begin
rst_sdr_sync_ms <= 1'b0;
rst_sdr_sync <= rst_sdr_sync_ms;
end
//------------------------------------------------------------------
// IDELAY is calibrated using (mandatory) IDELAYCTRL cell.
// Must be feed stable free running clock specified by: FIDELAYCTRL_REF.(200MHz)
// Mandatory async reset required, min pulse of: TIDELAYCTRL_RPW (~60nS)
//------------------------------------------------------------------
(* IODELAY_GROUP = GROUP *) // Specifies group name for associated IDELAYs/ODELAYs and IDELAYCTRL
IDELAYCTRL IDELAYCTRL_i0 (
.REFCLK (clk200),
.RST (rst_sdr_sync),
.RDY ()
);
//------------------------------------------------------------------
// Clock input
//------------------------------------------------------------------
wire ddr_clk_dly, ddr_clk_unbuf;
IBUFDS #(
.DIFF_TERM("TRUE")
) clk_ibufds (
.O(ddr_clk_unbuf),
.I(ddr_clk_p),
.IB(ddr_clk_n)
);
generate
if (USE_CLOCK_DELAY) begin : gen_clock_delay
(* IODELAY_GROUP = GROUP *) // Specifies group name for associated IDELAYs/ODELAYs and IDELAYCTRL
IDELAYE2 #(
.CINVCTRL_SEL ("FALSE"), // Enable dynamic clock inversion (FALSE, TRUE)
.DELAY_SRC ("IDATAIN"), // Delay input (IDATAIN, DATAIN)
.HIGH_PERFORMANCE_MODE ("FALSE"), // Reduced jitter ("TRUE"), Reduced power ("FALSE")
.IDELAY_TYPE (CLOCK_DELAY_MODE),
.IDELAY_VALUE (CLOCK_DELAY),
.PIPE_SEL ("FALSE"),
.REFCLK_FREQUENCY (200.0),
.SIGNAL_PATTERN ("CLOCK")
) ddr_clk_idelaye2 (
.CNTVALUEOUT (), // 5-bit output: Counter value output
.DATAOUT (ddr_clk_dly), // 1-bit output: Delayed data output
.C (ctrl_clk), // 1-bit input: Clock input
.CE (1'b0), // 1-bit input: Active high enable increment/decrement input
.CINVCTRL (1'b0), // 1-bit input: Dynamic clock inversion input
.CNTVALUEIN (ctrl_clk_delay), // 5-bit input: Counter value input
.DATAIN (1'b0), // 1-bit input: Internal delay data input
.IDATAIN (ddr_clk_unbuf), // 1-bit input: Data input from the I/O
.INC (1'b0), // 1-bit input: Increment / Decrement tap delay input
.LD (ctrl_ld_clk_delay), // 1-bit input: Load IDELAY_VALUE input
.LDPIPEEN (1'b0), // 1-bit input: Enable PIPELINE register to load data input
.REGRST (1'b0) // 1-bit input: Active-high reset tap-delay input
);
end
else begin
assign ddr_clk_dly = ddr_clk_unbuf;
end
endgenerate
// IO CLock is DDR freq. This drives SERDES and other I/O elements with minimal clock skew.
BUFIO ddr_clk_bufio (.O(ddr_clk),.I(ddr_clk_dly));
// SDR clock is one quarter DDR freq and local to regio using BUFR
// BUFR is a constraint of the SERDES since we need frequency agnostic clock division.
// UG471 states can use BUFIO and BUFR divided to directly drive a SERDES legally.
// (Other option is pair of BUFG's plus an MMCM - But MMCM has fixed frequency)
wire sdr_clk_2x;
BUFR #(
.BUFR_DIVIDE ("2"),
.SIM_DEVICE ("7SERIES")
) sdr_clk_2x_bufr (
.O (sdr_clk_2x),
.CE (1'b1),
.CLR (1'b0),
.I (ddr_clk_dly)
);
BUFR #(
.BUFR_DIVIDE("4"),
.SIM_DEVICE("7SERIES")
) sdr_clk_bufr (
.O(sdr_clk),
.CE(1'b1),
.CLR(1'b0),
.I(ddr_clk_dly)
);
generate
if (USE_BUFG) begin : gen_BUFG
// radio_clock is sdr_clk re-buffered with BUFG, and radio_clk_2x is
// sdr_clk_2x re-buffered, so both can be used globally. This introduces skew
// between sdr_clk -> radio_clock so we must hand data between them carefully
// even though they have a fixed phase relationship.
BUFG radio_clk_1x_bufg (.O(radio_clk), .I(sdr_clk));
BUFG radio_clk_2x_bufg (.O(radio_clk_2x), .I(sdr_clk_2x));
end else begin
assign radio_clk = sdr_clk;
assign radio_clk_2x = sdr_clk_2x;
end
endgenerate
//------------------------------------------------------------------
// Frame Signal
//------------------------------------------------------------------
wire ddr_frame, ddr_frame_dly;
wire [7:0] des_frame; // deserialized frame signal
reg bitslip;
reg aligned;
//
// Use FRAME signal to get bitstream word aligned.
//
// In MIMO mode, FRAME is asserted during the entirety of channel 0, and
// deasserts during the entirety of channel 1.
//
localparam IDLE = 0;
localparam SEARCH = 1;
localparam SLIP1 = 3;
localparam SLIP2 = 2;
localparam SLIP3 = 4;
localparam SLIP4 = 5;
localparam SYNC = 6;
reg [2:0] frame_state;
//
// Delay start of framesync operation for 64 clocks after reset de-asserts to
// SERDES to be sure they are in a steady state.
//
// Each time we assert bitslip we then have to wait 2 cycles before we can
// examine the results.
//
// Checking for 0xF0 and 0xCC allows us to support 1R1T and 2R2T timing,
// which have different frame periods.
wire frame_is_aligned =
(!frame_sample && (des_frame[7:0] == (INVERT_FRAME_RX ? 8'h0F : 8'hF0))) ||
( frame_sample && (des_frame[7:0] == (INVERT_FRAME_RX ? 8'h33 : 8'hCC)));
reg [5:0] sync_delay;
reg run_sync;
always @(posedge sdr_clk)
if (rst_sdr_sync) begin
sync_delay <= 6'h0;
run_sync <= 1'b0;
end else if (sync_delay == 6'h3F)
run_sync <= 1'b1;
else
sync_delay <= sync_delay + 1'b1;
always @(posedge sdr_clk)
begin
if (!run_sync) begin
frame_state <= IDLE;
bitslip <= 1'b0;
aligned <= 1'b0;
end else begin
case (frame_state)
IDLE: begin
bitslip <= 1'b0;
aligned <= 1'b0;
frame_state <= SEARCH;
end
SEARCH: begin
if (frame_is_aligned) begin
frame_state <= SYNC;
bitslip <= 1'b0;
aligned <= 1'b1;
end else begin
// Bitslip until captured frame is aligned
bitslip <= 1'b1;
frame_state <= SLIP1;
aligned <= 1'b0;
end
end
SLIP1: begin
frame_state <= SLIP2;
bitslip <= 1'b0;
aligned <= 1'b0;
end
SLIP2: begin
frame_state <= SLIP3;
bitslip <= 1'b0;
aligned <= 1'b0;
end
SLIP3: begin
frame_state <= SLIP4;
bitslip <= 1'b0;
aligned <= 1'b0;
end
SLIP4: begin
frame_state <= SEARCH;
bitslip <= 1'b0;
aligned <= 1'b0;
end
SYNC: begin
if (frame_is_aligned) begin
frame_state <= SYNC;
aligned <= 1'b1;
end else begin
frame_state <= SEARCH;
aligned <= 1'b0;
end
end
endcase // case(frame_state)
end
end
IBUFDS #(
.DIFF_TERM ("TRUE")
) ddr_frame_ibufds (
.O (ddr_frame),
.I (ddr_frame_p),
.IB (ddr_frame_n)
);
generate
if (USE_DATA_DELAY) begin : gen_frame_delay
(* IODELAY_GROUP = GROUP *) // Specifies group name for associated IDELAYs/ODELAYs and IDELAYCTRL
IDELAYE2 #(
.CINVCTRL_SEL ("FALSE"), // Enable dynamic clock inversion (FALSE, TRUE)
.DELAY_SRC ("IDATAIN"), // Delay input (IDATAIN, DATAIN)
.HIGH_PERFORMANCE_MODE ("FALSE"), // Reduced jitter ("TRUE"), Reduced power ("FALSE")
.IDELAY_TYPE (DATA_DELAY_MODE),
.IDELAY_VALUE (DATA_DELAY),
.PIPE_SEL ("FALSE"),
.REFCLK_FREQUENCY (200.0),
.SIGNAL_PATTERN ("DATA")
) ddr_frame_idelaye2 (
.CNTVALUEOUT (), // 5-bit output: Counter value output
.DATAOUT (ddr_frame_dly), // 1-bit output: Delayed data output
.C (ctrl_clk), // 1-bit input: Clock input
.CE (1'b0), // 1-bit input: Active high enable increment/decrement input
.CINVCTRL (1'b0), // 1-bit input: Dynamic clock inversion input
.CNTVALUEIN (ctrl_data_delay), // 5-bit input: Counter value input
.DATAIN (1'b0), // 1-bit input: Internal delay data input
.IDATAIN (ddr_frame), // 1-bit input: Data input from the I/O
.INC (1'b0), // 1-bit input: Increment / Decrement tap delay input
.LD (ctrl_ld_data_delay), // 1-bit input: Load IDELAY_VALUE input
.LDPIPEEN (1'b0), // 1-bit input: Enable PIPELINE register to load data input
.REGRST (1'b0) // 1-bit input: Active-high reset tap-delay input
);
end
else begin
assign ddr_frame_dly = ddr_frame;
end
endgenerate
ISERDESE2 #(
.DATA_RATE ("DDR"), // DDR, SDR
.DATA_WIDTH (8), // Parallel data width (2-8,10,14)
.DYN_CLKDIV_INV_EN ("FALSE"), // Enable DYNCLKDIVINVSEL inversion (FALSE, TRUE)
.DYN_CLK_INV_EN ("FALSE"), // Enable DYNCLKINVSEL inversion (FALSE, TRUE)
// INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)
.INIT_Q1 (1'b0),
.INIT_Q2 (1'b0),
.INIT_Q3 (1'b0),
.INIT_Q4 (1'b0),
.INTERFACE_TYPE ("NETWORKING"),
.IOBDELAY ("BOTH"),
.NUM_CE (1),
.OFB_USED ("FALSE"),
.SERDES_MODE ("MASTER"),
// SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)
.SRVAL_Q1 (1'b0),
.SRVAL_Q2 (1'b0),
.SRVAL_Q3 (1'b0),
.SRVAL_Q4 (1'b0)
) ddr_frame_serdese2 (
.O (), // 1-bit output: Combinatorial output
// Q1 - Q8: 1-bit (each) output: Registered data outputs
.Q1 (des_frame[0]),
.Q2 (des_frame[1]),
.Q3 (des_frame[2]),
.Q4 (des_frame[3]),
.Q5 (des_frame[4]),
.Q6 (des_frame[5]),
.Q7 (des_frame[6]),
.Q8 (des_frame[7]),
// SHIFTOUT1, SHIFTOUT2: 1-bit (each) output: Data width expansion output ports
.SHIFTOUT1 (),
.SHIFTOUT2 (),
// 1-bit input: The BITSLIP pin performs a Bitslip operation synchronous to
// CLKDIV when asserted (active High). Subsequently, the data seen on the Q1
// to Q8 output ports will shift, as in a barrel-shifter operation, one
// position every time Bitslip is invoked (DDR operation is different from SDR)
.BITSLIP (bitslip),
// CE1, CE2: 1-bit (each) input: Data register clock enable inputs
.CE1 (1'b1),
.CE2 (1'b1),
.CLKDIVP (1'b0), // 1-bit input: TBD
// Clocks: 1-bit (each) input: ISERDESE2 clock input ports
.CLK (ddr_clk), // 1-bit input: High-speed clock
.CLKB (~ddr_clk), // 1-bit input: High-speed secondary clock
.CLKDIV (sdr_clk), // 1-bit input: Divided clock
.OCLK (1'b0), // 1-bit input: High-speed output clock used when INTERFACE_TYPE="MEMORY"
// Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock polarity
.DYNCLKDIVSEL (1'b0), // 1-bit input: Dynamic CLKDIV inversion
.DYNCLKSEL (1'b0), // 1-bit input: Dynamic CLK/CLKB inversion
// Input Data: 1-bit (each) input: ISERDESE2 data input ports
.D (1'b0), // 1-bit input: Data input
.DDLY (ddr_frame_dly), // 1-bit input: Serial data from IDELAYE2
.OFB (1'b0), // 1-bit input: Data feedback from OSERDESE2
.OCLKB (1'b0), // 1-bit input: High-speed negative edge output clock
.RST (rst_sdr_sync), // 1-bit input: Active high asynchronous reset
// SHIFTIN1, SHIFTIN2: 1-bit (each) input: Data width expansion input ports
.SHIFTIN1 (1'b0),
.SHIFTIN2 (1'b0)
);
//------------------------------------------------------------------
// Data Bus
//------------------------------------------------------------------
wire [WIDTH-1:0] ddr_data;
wire [WIDTH-1:0] ddr_data_dly;
wire [(WIDTH*2)-1:0] data_i0, data_i1;
wire [(WIDTH*2)-1:0] data_q0, data_q1;
genvar i;
generate
for (i=0 ; i<WIDTH ; i=i+1) begin : generate_data_bus
IBUFDS #(
.DIFF_TERM ("TRUE")
) ddr_data_ibufds (
.O (ddr_data[i]),
.I (ddr_data_p[i]),
.IB (ddr_data_n[i])
);
if (USE_DATA_DELAY) begin : gen_data_delay
(* IODELAY_GROUP = GROUP *) // Specifies group name for associated IDELAYs/ODELAYs and IDELAYCTRL
IDELAYE2 #(
.CINVCTRL_SEL ("FALSE"), // Enable dynamic clock inversion (FALSE, TRUE)
.DELAY_SRC ("IDATAIN"), // Delay input (IDATAIN, DATAIN)
.HIGH_PERFORMANCE_MODE ("FALSE"), // Reduced jitter ("TRUE"), Reduced power ("FALSE")
.IDELAY_TYPE (DATA_DELAY_MODE),
.IDELAY_VALUE (DATA_DELAY),
.PIPE_SEL ("FALSE"),
.REFCLK_FREQUENCY (200.0),
.SIGNAL_PATTERN ("DATA")
) ddr_data_idelaye2 (
.CNTVALUEOUT (), // 5-bit output: Counter value output
.DATAOUT (ddr_data_dly[i]), // 1-bit output: Delayed data output
.C (ctrl_clk), // 1-bit input: Clock input
.CE (1'b0), // 1-bit input: Active high enable increment/decrement input
.CINVCTRL (1'b0), // 1-bit input: Dynamic clock inversion input
.CNTVALUEIN (ctrl_data_delay), // 5-bit input: Counter value input
.DATAIN (1'b0), // 1-bit input: Internal delay data input
.IDATAIN (ddr_data[i]), // 1-bit input: Data input from the I/O
.INC (1'b0), // 1-bit input: Increment / Decrement tap delay input
.LD (ctrl_ld_data_delay), // 1-bit input: Load IDELAY_VALUE input
.LDPIPEEN (1'b0), // 1-bit input: Enable PIPELINE register to load data input
.REGRST (1'b0) // 1-bit input: Active-high reset tap-delay input
);
end
else begin
assign ddr_data_dly[i] = ddr_data[i];
end
ISERDESE2 #(
.DATA_RATE ("DDR"), // DDR, SDR
.DATA_WIDTH (8), // Parallel data width (2-8,10,14)
.DYN_CLKDIV_INV_EN ("FALSE"), // Enable DYNCLKDIVINVSEL inversion (FALSE, TRUE)
.DYN_CLK_INV_EN ("FALSE"), // Enable DYNCLKINVSEL inversion (FALSE, TRUE)
// INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)
.INIT_Q1 (1'b0),
.INIT_Q2 (1'b0),
.INIT_Q3 (1'b0),
.INIT_Q4 (1'b0),
.INTERFACE_TYPE ("NETWORKING"),
.IOBDELAY ("BOTH"),
.NUM_CE (1),
.OFB_USED ("FALSE"),
.SERDES_MODE ("MASTER"),
// SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)
.SRVAL_Q1 (1'b0),
.SRVAL_Q2 (1'b0),
.SRVAL_Q3 (1'b0),
.SRVAL_Q4 (1'b0)
) ddr_data_serdese2 (
.O (), // 1-bit output: Combinatorial output
// Q1 - Q8: 1-bit (each) output: Registered data outputs
.Q1 (data_q1[i]),
.Q2 (data_i1[i]),
.Q3 (data_q1[WIDTH+i]),
.Q4 (data_i1[WIDTH+i]),
.Q5 (data_q0[i]),
.Q6 (data_i0[i]),
.Q7 (data_q0[WIDTH+i]),
.Q8 (data_i0[WIDTH+i]),
// SHIFTOUT1, SHIFTOUT2: 1-bit (each) output: Data width expansion output ports
.SHIFTOUT1 (),
.SHIFTOUT2 (),
// 1-bit input: The BITSLIP pin performs a Bitslip operation synchronous to
// CLKDIV when asserted (active High). Subsequently, the data seen on the Q1
// to Q8 output ports will shift, as in a barrel-shifter operation, one
// position every time Bitslip is invoked (DDR operation is different from SDR)
.BITSLIP (bitslip),
// CE1, CE2: 1-bit (each) input: Data register clock enable inputs
.CE1 (1'b1),
.CE2 (1'b1),
.CLKDIVP (1'b0), // 1-bit input: TBD
// Clocks: 1-bit (each) input: ISERDESE2 clock input ports
.CLK (ddr_clk), // 1-bit input: High-speed clock
.CLKB (~ddr_clk), // 1-bit input: High-speed secondary clock
.CLKDIV (sdr_clk), // 1-bit input: Divided clock
.OCLK (1'b0), // 1-bit input: High-speed output clock used when INTERFACE_TYPE="MEMORY"
// Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock polarity
.DYNCLKDIVSEL (1'b0), // 1-bit input: Dynamic CLKDIV inversion
.DYNCLKSEL (1'b0), // 1-bit input: Dynamic CLK/CLKB inversion
// Input Data: 1-bit (each) input: ISERDESE2 data input ports
.D (1'b0), // 1-bit input: Data input
.DDLY (ddr_data_dly[i]), // 1-bit input: Serial data from IDELAYE2
.OFB (1'b0), // 1-bit input: Data feedback from OSERDESE2
.OCLKB (1'b0), // 1-bit input: High-speed negative edge output clock
.RST (rst_sdr_sync), // 1-bit input: Active high asynchronous reset
// SHIFTIN1, SHIFTIN2: 1-bit (each) input: Data width expansion input ports
.SHIFTIN1 (1'b0),
.SHIFTIN2 (1'b0)
);
end // block: generate_data_bus
endgenerate
//
// Cross these cycles to radio_clk using negative edge. This give 1/2 a radio
// clock period + BUFG insertion delay for signals to propagate. Thats > 6nS.
//
reg [(WIDTH*2)-1:0] radio_data_i0, radio_data_i1, radio_data_q0, radio_data_q1;
reg radio_aligned;
always @(negedge radio_clk)
begin
radio_data_i0[(WIDTH*2)-1:0] <= data_i0[(WIDTH*2)-1:0] ^ {INVERT_DATA_RX,INVERT_DATA_RX};
radio_data_q0[(WIDTH*2)-1:0] <= data_q0[(WIDTH*2)-1:0] ^ {INVERT_DATA_RX,INVERT_DATA_RX};
radio_data_i1[(WIDTH*2)-1:0] <= data_i1[(WIDTH*2)-1:0] ^ {INVERT_DATA_RX,INVERT_DATA_RX};
radio_data_q1[(WIDTH*2)-1:0] <= data_q1[(WIDTH*2)-1:0] ^ {INVERT_DATA_RX,INVERT_DATA_RX};
radio_aligned <= aligned;
end
always @(posedge radio_clk)
begin
i0 <= radio_data_i0;
q0 <= radio_data_q0;
if (mimo) { i1, q1 } <= { radio_data_i1, radio_data_q1 };
else { i1, q1 } <= { radio_data_i0, radio_data_q0 }; // dup single valid channel to both radios
rx_aligned <= radio_aligned;
end
/*******************************************************************
* Debug only logic below here.
******************************************************************/
/*-----\/----- EXCLUDED -----\/-----
(* keep = "true", max_fanout = 10 *) reg [7:0] des_frame_reg;
(* keep = "true", max_fanout = 10 *) reg rst_sdr_sync_reg;
(* keep = "true", max_fanout = 10 *) reg run_sync_reg;
(* keep = "true", max_fanout = 10 *) reg bitslip_reg;
(* keep = "true", max_fanout = 10 *) reg aligned_reg;
(* keep = "true", max_fanout = 10 *) reg [2:0] frame_state_reg;
always @(posedge sdr_clk)
begin
des_frame_reg <= des_frame;
rst_sdr_sync_reg <= rst_sdr_sync;
run_sync_reg <= run_sync;
bitslip_reg <= bitslip;
aligned_reg <= aligned;
frame_state_reg <= frame_state;
end
ila64 ila64_i (
.clk(sdr_clk), // input clk
.probe0(
{
des_frame_reg,
rst_sdr_sync_reg,
run_sync_reg,
bitslip_reg,
aligned_reg,
frame_state_reg
}
)
);
-----/\----- EXCLUDED -----/\----- */
endmodule
|