1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
//
// Copyright 2024 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: fft_post_processing
//
// Description:
//
// This module contains the optional post-processing stages of an FFT,
// including FFT output reordering, magnitude, and magnitude-squared
// calculations.
//
// For the magnitude, the result is clipped to a signed 16-bit result in the
// range [0, 0x7FFF]. The result is placed in the real part of the sc16
// output (the upper 16 bits) and the imaginary part (the lower 16 bits) is
// set to 0.
//
// For the magnitude squared, it computes (i^2 + q^2) / 0x8000, rounding and
// clipping the result to a signed 16-bit value in the range [0, 0x7FFF]. The
// division helps to avoid saturation and to put the result in a useful
// range. The result is placed in the real part of the sc16 output (the upper
// 16 bits) and the imaginary part (the lower 16 bits) is set to 0.
//
// Note that the I and Q may be swapped in the RFNoC transport adapter, so
// this order will likely be reversed by the time it makes it back to a host
// computer.
//
// Parameters:
//
// EN_FFT_ORDER : Set to 1 to add the optional FFT reorder core. Set to
// 0 to remove it and save resources.
// EN_CP_INSERTION : Controls whether to include the cyclic prefix
// insertion logic, which is a subset of EN_FFT_ORDER.
// EN_MAGNITUDE : Set to 1 to add the magnitude output calculation core.
// Set to 0 to remove it and save resources.
// EN_MAGNITUDE_SQ : Set to 1 to add the magnitude squared output
// calculation core. Set to 0 to remove it and save
// resources.
// USE_APPROX_MAG : Controls which magnitude calculation to use. Set to 1
// to use a simpler circuit that gives pretty good
// results in order to save resources. Set to 0 to use
// the CORDIC IP to calculate the magnitude.
// MAX_FFT_SIZE_LOG2 : Set to the log base 2 of the maximum FFT size to be
// supported. For example, a value of 14 means the
// maximum FFT size is 2**14 = 4096.
//
// Signals:
//
// fft_order_sel : 0 - Normal (0 Hz in the center)
// 1 - Reverse (same as normal but in reverse)
// 2 - Natural (0 Hz on the left)
// magnitude_sel : 0 - Normal complex output (No magnitude calculation)
// 1 - Magnitude output
// 2 - Magnitude-squared output
// fft_size_log2 : Log base-2 of the FFT size. That is, the FFT size is
// exactly 2**fft_size_log2. The packet size must match.
// s_axis_* : AXI-Stream data input. s_axis_tuser contains the cyclic
// prefix length and must be valid on the first transfer of
// the packet.
// m_axis_* : AXI-Stream data output
`default_nettype none
module fft_post_processing #(
bit EN_FFT_ORDER = 1,
bit EN_CP_INSERTION = 1,
bit EN_MAGNITUDE = 1,
bit EN_MAGNITUDE_SQ = 1,
bit USE_APPROX_MAG = 1,
int MAX_FFT_SIZE_LOG2 = 12,
localparam int FFT_SIZE_LOG2_W = $clog2(MAX_FFT_SIZE_LOG2+1),
localparam int CP_LEN_W = MAX_FFT_SIZE_LOG2
) (
input wire clk,
input wire rst,
input wire [1:0] fft_order_sel,
input wire [1:0] magnitude_sel,
input wire [FFT_SIZE_LOG2_W-1:0] fft_size_log2,
input wire [ 31:0] s_axis_tdata,
input wire [CP_LEN_W-1:0] s_axis_tuser,
input wire s_axis_tlast,
input wire s_axis_tvalid,
output wire s_axis_tready,
output wire [31:0] m_axis_tdata,
output wire m_axis_tlast,
output wire m_axis_tvalid,
input wire m_axis_tready
);
//---------------------------------------------------------------------------
// FFT Reorder
//---------------------------------------------------------------------------
import fft_reorder_pkg::*;
wire [31:0] reorder_tdata;
wire reorder_tlast;
wire reorder_tvalid;
wire reorder_tready;
if (EN_FFT_ORDER) begin : gen_fft_reorder
logic [1:0] old_fft_order_sel;
logic [FFT_SIZE_LOG2_W-1:0] old_fft_size_log2;
logic fft_cfg_wr;
// Update the FFT config whenever it changes
always_ff @(posedge clk) begin
fft_cfg_wr <= 0;
if (
(old_fft_order_sel != fft_order_sel) ||
(old_fft_size_log2 != fft_size_log2)
) begin
fft_cfg_wr <= 1;
end
old_fft_order_sel <= fft_order_sel;
old_fft_size_log2 <= fft_size_log2;
end
fft_reorder #(
.INPUT_ORDER (BIT_REVERSE),
.MAX_FFT_LEN_LOG2(MAX_FFT_SIZE_LOG2),
.DATA_W (32),
.EN_CP_INSERTION (EN_CP_INSERTION)
) fft_reorder_i (
.clk (clk),
.rst (rst),
.fft_cfg_wr (fft_cfg_wr),
.fft_len_log2 (fft_size_log2),
.fft_out_order(fft_order_t'(fft_order_sel)),
.i_tdata (s_axis_tdata),
.i_tuser (s_axis_tuser),
.i_tlast (s_axis_tlast),
.i_tvalid (s_axis_tvalid),
.i_tready (s_axis_tready),
.o_tdata (reorder_tdata),
.o_tlast (reorder_tlast),
.o_tvalid (reorder_tvalid),
.o_tready (reorder_tready)
);
end else begin : gen_no_fft_reorder
// Pass the data directly through when reordering is disabled.
assign reorder_tdata = s_axis_tdata;
assign reorder_tlast = s_axis_tlast;
assign reorder_tvalid = s_axis_tvalid;
assign s_axis_tready = reorder_tready;
end
//---------------------------------------------------------------------------
// Demultiplex Magnitude Options
//---------------------------------------------------------------------------
wire [31:0] mag_bypass_tdata;
wire mag_bypass_tlast;
wire mag_bypass_tvalid;
wire mag_bypass_tready;
wire [31:0] mag_in_tdata;
wire mag_in_tlast;
wire mag_in_tvalid;
wire mag_in_tready;
wire [31:0] mag_sq_in_tdata;
wire mag_sq_in_tlast;
wire mag_sq_in_tvalid;
wire mag_sq_in_tready;
if (EN_MAGNITUDE || EN_MAGNITUDE_SQ) begin : gen_mag_demux
axi_demux #(
.WIDTH (32),
.SIZE (3),
.PRE_FIFO_SIZE (0),
.POST_FIFO_SIZE(0)
) axi_demux_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.header (),
.dest (magnitude_sel),
.i_tdata (reorder_tdata),
.i_tlast (reorder_tlast),
.i_tvalid(reorder_tvalid),
.i_tready(reorder_tready),
.o_tdata ({mag_sq_in_tdata , mag_in_tdata , mag_bypass_tdata }),
.o_tlast ({mag_sq_in_tlast , mag_in_tlast , mag_bypass_tlast }),
.o_tvalid({mag_sq_in_tvalid, mag_in_tvalid, mag_bypass_tvalid}),
.o_tready({mag_sq_in_tready, mag_in_tready, mag_bypass_tready})
);
end
//---------------------------------------------------------------------------
// Magnitude
//---------------------------------------------------------------------------
wire [31:0] mag_out_tdata;
wire mag_out_tlast;
wire mag_out_tvalid;
wire mag_out_tready;
if (EN_MAGNITUDE) begin : gen_magnitude
wire [16:0] round_in_tdata;
wire [31:0] round_in_tdata_tmp;
wire round_in_tlast;
wire round_in_tvalid;
wire round_in_tready;
wire [15:0] mag_out_tdata_tmp;
if (!USE_APPROX_MAG) begin : gen_cordic
wire [47:0] m_axis_dout_tdata;
// The CORDIC IP below inputs/outputs its data as signed numbers having 2
// whole bits and 15 fractional bits (17 total bits). To be compliant
// with AXI, each value is stuffed into a 24-bit vector. On the input, we
// resize our sc16 inputs to be 24 bits (the upper 7 bits will be ignored
// by the IP). On the output side, we only need the magnitude, which is
// in the lower 17 bits. The phase, in the upper bits, is left unused.
complex_to_magphase_int17 complex_to_magphase_int17_i (
.aclk (clk),
.aresetn (~rst),
.s_axis_cartesian_tvalid(mag_in_tvalid),
.s_axis_cartesian_tlast (mag_in_tlast),
.s_axis_cartesian_tready(mag_in_tready),
.s_axis_cartesian_tdata ({ 24'(signed'(mag_in_tdata[31:16])),
24'(signed'(mag_in_tdata[15:0])) }),
.m_axis_dout_tvalid (round_in_tvalid),
.m_axis_dout_tlast (round_in_tlast),
.m_axis_dout_tdata (m_axis_dout_tdata),
.m_axis_dout_tready (round_in_tready)
);
assign round_in_tdata_tmp = 32'(m_axis_dout_tdata[16:0]);
end else if (USE_APPROX_MAG) begin : gen_approx
complex_to_mag_approx complex_to_mag_approx_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tvalid(mag_in_tvalid),
.i_tlast (mag_in_tlast),
.i_tready(mag_in_tready),
.i_tdata (mag_in_tdata),
.o_tvalid(round_in_tvalid),
.o_tlast (round_in_tlast),
.o_tready(round_in_tready),
.o_tdata (round_in_tdata_tmp[15:0])
);
assign round_in_tdata_tmp[31:16] = '0;
end
// The magnitude is always positive, so we set the MSB to 0 then clip the
// result to a signed 16-bit value.
assign round_in_tdata = {1'b0, round_in_tdata_tmp[15:0]};
axi_round_and_clip #(
.WIDTH_IN (17),
.WIDTH_OUT(16),
.CLIP_BITS(1)
) axi_round_and_clip_i (
.clk (clk),
.reset (rst),
.i_tdata (round_in_tdata),
.i_tlast (round_in_tlast),
.i_tvalid(round_in_tvalid),
.i_tready(round_in_tready),
.o_tdata (mag_out_tdata_tmp),
.o_tlast (mag_out_tlast),
.o_tvalid(mag_out_tvalid),
.o_tready(mag_out_tready)
);
// Put the resulting magnitude in the "real" part of the output
assign mag_out_tdata = {mag_out_tdata_tmp, 16'd0};
end else begin : gen_no_magnitude
assign mag_out_tdata = '0;
assign mag_out_tlast = '0;
assign mag_out_tvalid = '0;
assign mag_in_tready = '1;
end
//---------------------------------------------------------------------------
// Magnitude Squared
//---------------------------------------------------------------------------
wire [31:0] mag_sq_out_tdata;
wire mag_sq_out_tlast;
wire mag_sq_out_tvalid;
wire mag_sq_out_tready;
if (EN_MAGNITUDE_SQ) begin : gen_magnitude_squared
wire [31:0] round_in_tdata;
wire round_in_tlast;
wire round_in_tvalid;
wire round_in_tready;
wire [15:0] mag_sq_out_tdata_tmp;
complex_to_magsq complex_to_magsq_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tvalid(mag_sq_in_tvalid),
.i_tlast (mag_sq_in_tlast),
.i_tready(mag_sq_in_tready),
.i_tdata (mag_sq_in_tdata),
.o_tvalid(round_in_tvalid),
.o_tlast (round_in_tlast),
.o_tready(round_in_tready),
.o_tdata (round_in_tdata)
);
axi_round_and_clip #(
.WIDTH_IN (32),
.WIDTH_OUT(16),
.CLIP_BITS(1)
) axi_round_and_clip_i (
.clk (clk),
.reset (rst),
.i_tdata (round_in_tdata),
.i_tlast (round_in_tlast),
.i_tvalid(round_in_tvalid),
.i_tready(round_in_tready),
.o_tdata (mag_sq_out_tdata_tmp),
.o_tlast (mag_sq_out_tlast),
.o_tvalid(mag_sq_out_tvalid),
.o_tready(mag_sq_out_tready)
);
assign mag_sq_out_tdata = {mag_sq_out_tdata_tmp, 16'd0};
end else begin : gen_no_magnitude_squared
assign mag_sq_out_tdata = '0;
assign mag_sq_out_tlast = '0;
assign mag_sq_out_tvalid = '0;
assign mag_sq_in_tready = '1;
end
//---------------------------------------------------------------------------
// Combine Magnitude Options
//---------------------------------------------------------------------------
if (EN_MAGNITUDE || EN_MAGNITUDE_SQ) begin : gen_mag_mux
axi_mux #(
.PRIO (1),
.WIDTH (32),
.SIZE (3),
.PRE_FIFO_SIZE (0),
.POST_FIFO_SIZE(0)
) axi_demux_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tdata ({mag_sq_out_tdata , mag_out_tdata , mag_bypass_tdata }),
.i_tlast ({mag_sq_out_tlast , mag_out_tlast , mag_bypass_tlast }),
.i_tvalid({mag_sq_out_tvalid, mag_out_tvalid, mag_bypass_tvalid}),
.i_tready({mag_sq_out_tready, mag_out_tready, mag_bypass_tready}),
.o_tdata (m_axis_tdata),
.o_tlast (m_axis_tlast),
.o_tvalid(m_axis_tvalid),
.o_tready(m_axis_tready)
);
end else begin : gen_no_mag_mux
assign m_axis_tdata = reorder_tdata;
assign m_axis_tlast = reorder_tlast;
assign m_axis_tvalid = reorder_tvalid;
assign reorder_tready = m_axis_tready;
end
endmodule : fft_post_processing
`default_nettype wire
|