File: rx_frontend_gen3.v

package info (click to toggle)
uhd 4.8.0.0%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 183,172 kB
  • sloc: cpp: 279,415; python: 109,850; ansic: 103,348; vhdl: 57,230; tcl: 20,007; xml: 8,581; makefile: 2,863; sh: 2,797; pascal: 230; javascript: 120; csh: 94; asm: 20; perl: 11
file content (335 lines) | stat: -rw-r--r-- 13,034 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
//
// Copyright 2015 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
// Copyright 2020 Ettus Research, a National Instruments Brand
// Copyright 2023 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: rx_frontend_gen3
//
// Description:
//
//   RX Frontend Correction Module
//   -----------------------------
//
//   This module will perform the following modifications of the signal, in this
//   order:
//
//   1) I/Q Swapping/Reordering: The I and Q values from the ADC can be remapped
//      arbitrarily and can be inverted. The behaviour of this IQ mux is
//      controlled by writing to the settings register at SR_IQ_MAPPING.
//
//      This register uses the following bits:
//
//      Bit 0:  Set to 1 to swap I and Q.
//      Bit 1:  Set to 1 to enable real mode. If it is 1, then
//              the Q input signal is ignored and assumed to be zero.
//      Bit 2:  Set to 1 to invert the Q input signal
//      Bit 3:  Set to 1 to invert the I input signal
//      Bit 4:  Set to 1 to enable the quarter-rate downconverter (only relevant
//              when BYPASS_HETERODYNE is set to 0, see below).
//      Bit 7:  Disable all corrections in this module.
//
//   2) DC offset correction. See the rx_dcoffset module for details. This is
//      either a fixed DC offset, or a notch filter around DC. The behaviour of
//      this correction step is controlled by writing to settings registers at
//      SR_OFFSET_I and SR_OFFSET_Q (they get forwarded to rx_dcoffset).
//      Set BYPASS_DC_OFFSET_CORR to 1 to not synthesize this step.
//
//   3) IQ imbalance correction. This implements a simple, one-shot IQ imbalance
//      correction. It will modify the I and Q signals as follows:
//           _  _     _         _   _   _
//          | I' |   | A/64+1  0 | |  I  |
//          |    | = |           | |     |
//          | Q' |   | B/64    1 | |  Q  |
//           ‾  ‾     ‾         ‾   ‾   ‾
//
//      Here, A is the value written to the register at SR_MAG_CORRECTION, and
//      B is the value written to the register at SR_PHASE_CORRECTION.
//      Set BYPASS_IQ_COMP to 1 to not synthesize this step.
//
//   4) Heterodyne conversion. The converter is only enabled when the
//      "downconvert" bit in the SR_IQ_MAPPING register is asserted. In this
//      case, it enables a quarter-rate mixer. The direction of this mixer is
//      controlled by the SR_HET_PHASE_INCR register (a 0 in this register
//      rotates by pi/2 every clock cycle, a 1 in this register rotates by -pi/2).
//
//      The mixer is followed by a non-decimating FIR filter.
//
//      Set BYPASS_HETERODYNE to 1 to not synthesize this step.
//
//
// UHD Developers Note: This module is typically controlled by rx_frontend_core_3000 in UHD,
// and is also described in the calibration.dox manual page. When modifying this file, make
// sure to also modify those files if necessary.
//
// Parameters:
//   SR_MAG_CORRECTION     : Settings register address for the IQ correction "MAG" value
//   SR_PHASE_CORRECTION   : Settings register address for the IQ correction "PHASE" value
//   SR_OFFSET_I           : Settings register address for DC offset I correction
//                           value (goes to rx_dcoffset)
//   SR_OFFSET_Q           : Settings register address for DC offset Q correction
//                           value (goes to rx_dcoffset)
//   SR_IQ_MAPPING         : Settings register address for IQ mapping value
//   SR_HET_PHASE_INCR     : Settings register address for the real mode phase
//                           increment value
//   BYPASS_DC_OFFSET_CORR : Set to 1 to disable DC offset correction
//   BYPASS_IQ_COMP        : Set to 1 to disable IQ offset correction
//   BYPASS_HETERODYNE     : Set to 1 to disable heterodyne conversion
//   DEVICE                : Unused.
//
module rx_frontend_gen3 #(
  parameter SR_MAG_CORRECTION = 0,
  parameter SR_PHASE_CORRECTION = 1,
  parameter SR_OFFSET_I = 2,
  parameter SR_OFFSET_Q = 3,
  parameter SR_IQ_MAPPING = 4,
  parameter SR_HET_PHASE_INCR = 5,
  parameter BYPASS_DC_OFFSET_CORR = 0,
  parameter BYPASS_IQ_COMP = 0,
  parameter BYPASS_HETERODYNE = 0,
  parameter DEVICE = "7SERIES"
)(
  input clk, input reset, input sync_in,
  input set_stb, input [7:0] set_addr, input [31:0] set_data,
  input adc_stb, input [15:0] adc_i, input [15:0] adc_q,
  output rx_stb, output [15:0] rx_i, output [15:0] rx_q
);

  wire               realmode;
  wire               swap_iq;
  wire               invert_i;
  wire               invert_q;
  wire               downconvert;
  wire               bypass_all;
  wire [1:0]         iq_map_reserved;
  wire [17:0]        mag_corr, phase_corr;
  wire               phase_dir;
  wire               phase_sync;

  reg  [23:0]        adc_i_mux, adc_q_mux;
  reg                adc_mux_stb;
  wire [23:0]        adc_i_ofs, adc_q_ofs, adc_i_comp, adc_q_comp;
  wire               adc_ofs_stb, adc_comp_stb;
  reg  [1:0]         adc_ofs_stb_dly;
  wire [23:0]        adc_i_dsp, adc_q_dsp;
  wire               adc_dsp_stb;
  wire [15:0]        rx_i_out, rx_q_out;

  /********************************************************
  ** Settings Bus Registers
  ********************************************************/
  setting_reg #(.my_addr(SR_MAG_CORRECTION),.width(18)) sr_mag_corr (
    .clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
    .in(set_data),.out(mag_corr),.changed());

  setting_reg #(.my_addr(SR_PHASE_CORRECTION),.width(18)) sr_phase_corr (
    .clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
    .in(set_data),.out(phase_corr),.changed());

  setting_reg #(.my_addr(SR_IQ_MAPPING), .width(8)) sr_mux_sel (
    .clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
    .in(set_data),
    .out({bypass_all,iq_map_reserved,downconvert,invert_i,invert_q,realmode,swap_iq}),
    .changed());

  // Setting reg: 1 bit to set phase direction: default to 0:
  //   direction bit == 0: the phase is increased by pi/2 (counter clockwise)
  //   direction bit == 1: the phase is increased by -pi/2 (clockwise)
  setting_reg #(.my_addr(SR_HET_PHASE_INCR), .width(1)) sr_phase_dir (
    .clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
    .in(set_data),.out(phase_dir),.changed(phase_sync));

  /********************************************************
  ** IQ Mapping (swapping, inversion, real-mode)
  ********************************************************/
  // MUX so we can do realmode signals on either input
  always @(posedge clk) begin
    if (swap_iq) begin
      adc_i_mux[23:8] <= invert_q ? ~adc_q   : adc_q;
      adc_q_mux[23:8] <= realmode ? 16'd0 : invert_i ? ~adc_i : adc_i;
    end else begin
      adc_i_mux[23:8] <= invert_i ? ~adc_i   : adc_i;
      adc_q_mux[23:8] <= realmode ? 16'd0 : invert_q ? ~adc_q : adc_q;
    end
    adc_mux_stb <= adc_stb;
    adc_i_mux[7:0] <= 8'd0;
    adc_q_mux[7:0] <= 8'd0;
  end

  /********************************************************
  ** DC offset Correction
  ********************************************************/
  generate
    if (BYPASS_DC_OFFSET_CORR == 0) begin

      rx_dcoffset #(.WIDTH(24),.ADDR(SR_OFFSET_I)) rx_dcoffset_i (
        .clk(clk),.rst(reset),.set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
        .in_stb(adc_mux_stb),.in(adc_i_mux),
        .out_stb(adc_ofs_stb),.out(adc_i_ofs));
      rx_dcoffset #(.WIDTH(24),.ADDR(SR_OFFSET_Q)) rx_dcoffset_q (
        .clk(clk),.rst(reset),.set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
        .in_stb(adc_mux_stb),.in(adc_q_mux),
        .out_stb(),.out(adc_q_ofs));

    end else begin
      assign adc_ofs_stb = adc_mux_stb;
      assign adc_i_ofs   = adc_i_mux;
      assign adc_q_ofs   = adc_q_mux;
    end
  endgenerate

  /********************************************************
  ** IQ Imbalance Compensation
  ********************************************************/
  generate
    if (BYPASS_IQ_COMP == 0) begin

      mult_add_clip #(
        .WIDTH_A(18),
        .BIN_PT_A(17),
        .WIDTH_B(18),
        .BIN_PT_B(17),
        .WIDTH_C(24),
        .BIN_PT_C(23),
        .WIDTH_O(24),
        .BIN_PT_O(23),
        .LATENCY(2)
      ) mult_i (
        .clk(clk),
        .reset(reset),
        .CE(1'b1),
        .A(adc_i_ofs[23:6]),
        .B(mag_corr),
        .C(adc_i_ofs),
        .O(adc_i_comp)
      );

      mult_add_clip #(
        .WIDTH_A(18),
        .BIN_PT_A(17),
        .WIDTH_B(18),
        .BIN_PT_B(17),
        .WIDTH_C(24),
        .BIN_PT_C(23),
        .WIDTH_O(24),
        .BIN_PT_O(23),
        .LATENCY(2)
      ) mult_q (
        .clk(clk),
        .reset(reset),
        .CE(1'b1),
        .A(adc_i_ofs[23:6]),
        .B(phase_corr),
        .C(adc_q_ofs),
        .O(adc_q_comp)
      );

      // Delay to match path latencies
      always @(posedge clk) begin
        if (reset) begin
          adc_ofs_stb_dly <= 2'b0;
        end else begin
          adc_ofs_stb_dly <= {adc_ofs_stb_dly[0], adc_ofs_stb};
        end
      end

      assign adc_comp_stb = adc_ofs_stb_dly[1];

    end else begin
      assign adc_comp_stb = adc_ofs_stb;
      assign adc_i_comp   = adc_i_ofs;
      assign adc_q_comp   = adc_q_ofs;
    end
  endgenerate

  /********************************************************
  ** Realmode DSP:
  *  - Heterodyne frequency translation
  *  - Realmode decimation (by 2)
  ********************************************************/
  generate
    if (BYPASS_HETERODYNE == 0) begin

      wire [23:0] adc_i_dsp_cout, adc_q_dsp_cout;
      wire [23:0] adc_i_filt, adc_q_filt;
      wire        adc_dsp_cout_stb;
      wire        adc_filt_stb;

      // 90 degree mixer
      quarter_rate_downconverter #(.WIDTH(24)) qr_dc_i(
        .clk(clk), .reset(reset || sync_in), .phase_sync(phase_sync),
        .i_tdata({adc_i_comp, adc_q_comp}), .i_tlast(1'b1), .i_tvalid(adc_comp_stb), .i_tready(),
        .o_tdata({adc_i_dsp_cout, adc_q_dsp_cout}), .o_tlast(), .o_tvalid(adc_dsp_cout_stb), .o_tready(1'b1),
        .dirctn(phase_dir));

      // Double FIR block
      localparam HB_COEFS = {-18'd62, 18'd0, 18'd194, 18'd0, -18'd440, 18'd0, 18'd855, 18'd0, -18'd1505, 18'd0, 18'd2478, 18'd0,
        -18'd3900, 18'd0, 18'd5990, 18'd0, -18'd9187, 18'd0, 18'd14632, 18'd0, -18'd26536, 18'd0, 18'd83009, 18'd131071, 18'd83009,
        18'd0, -18'd26536, 18'd0, 18'd14632, 18'd0, -18'd9187, 18'd0, 18'd5990, 18'd0, -18'd3900, 18'd0, 18'd2478, 18'd0, -18'd1505,
        18'd0, 18'd855, 18'd0, -18'd440, 18'd0, 18'd194, 18'd0, -18'd62};

      // FIR filter for real part
      axi_fir_filter #(.IN_WIDTH(24), .COEFF_WIDTH(18), .OUT_WIDTH(24), .NUM_COEFFS(47), .COEFFS_VEC(HB_COEFS),
        .RELOADABLE_COEFFS(0), .BLANK_OUTPUT(0), .SYMMETRIC_COEFFS(1), .SKIP_ZERO_COEFFS(1), .USE_EMBEDDED_REGS_COEFFS(0)
      ) hbfir0(
        .clk(clk),
        .reset(reset),
        .clear(reset),
        .s_axis_data_tdata(adc_i_dsp_cout),
        .s_axis_data_tlast(1'b1),
        .s_axis_data_tvalid(adc_dsp_cout_stb),
        .s_axis_data_tready(),
        .m_axis_data_tdata(adc_i_filt),
        .m_axis_data_tlast(),
        .m_axis_data_tvalid(adc_filt_stb),
        .m_axis_data_tready(1'b1),
        .s_axis_reload_tdata(18'd0),
        .s_axis_reload_tvalid(1'b0),
        .s_axis_reload_tlast(1'b0),
        .s_axis_reload_tready()
      );

      // FIR filter for imag. part
      axi_fir_filter #(.IN_WIDTH(24), .COEFF_WIDTH(18), .OUT_WIDTH(24), .NUM_COEFFS(47), .COEFFS_VEC(HB_COEFS),
        .RELOADABLE_COEFFS(0), .BLANK_OUTPUT(0), .SYMMETRIC_COEFFS(1), .SKIP_ZERO_COEFFS(1), .USE_EMBEDDED_REGS_COEFFS(0)
      ) hbfir1(
        .clk(clk),
        .reset(reset),
        .clear(reset),
        .s_axis_data_tdata(adc_q_dsp_cout),
        .s_axis_data_tlast(1'b1),
        .s_axis_data_tvalid(adc_dsp_cout_stb),
        .s_axis_data_tready(),
        .m_axis_data_tdata(adc_q_filt),
        .m_axis_data_tlast(),
        .m_axis_data_tvalid(),
        .m_axis_data_tready(1'b1),
        .s_axis_reload_tdata(18'd0),
        .s_axis_reload_tvalid(1'b0),
        .s_axis_reload_tlast(1'b0),
        .s_axis_reload_tready()
      );

      assign adc_dsp_stb = downconvert ? adc_filt_stb : adc_comp_stb;
      assign adc_i_dsp   = downconvert ? adc_i_filt : adc_i_comp;
      assign adc_q_dsp   = downconvert ? adc_q_filt : adc_q_comp;

    end else begin
      assign adc_dsp_stb = adc_comp_stb;
      assign adc_i_dsp   = adc_i_comp;
      assign adc_q_dsp   = adc_q_comp;
    end
  endgenerate

  // Round to short complex (sc16)
  round_sd #(.WIDTH_IN(24),.WIDTH_OUT(16)) round_i (
    .clk(clk),.reset(reset), .in(adc_i_dsp),.strobe_in(adc_dsp_stb), .out(rx_i_out), .strobe_out(rx_stb));
  round_sd #(.WIDTH_IN(24),.WIDTH_OUT(16)) round_q (
    .clk(clk),.reset(reset), .in(adc_q_dsp),.strobe_in(adc_dsp_stb), .out(rx_q_out), .strobe_out());

  assign rx_i = bypass_all ? adc_i : rx_i_out;
  assign rx_q = bypass_all ? adc_q : rx_q_out;

endmodule