1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: axis_switch
//
// Description:
//
// Implementation of a M-input, N-output AXI-Stream switch. One of the M
// input ports is allocated based on the s_axis_alloc signal and the packet
// on that port is sent to one of the N output ports based on the tdest
// signal.
//
// Parameters:
//
// DATA_W : tdata width
// DEST_W : Output tdest width
// IN_PORTS : Number of input ports
// OUT_PORTS : Number of output ports
// PIPELINE : Instantiate output pipeline stage?
// ALLOC_W : PRIVATE. Do not modify.
//
// Ports:
//
// clk : Switch clock
// reset : Reset
// s_axis_tdata : Input data
// s_axis_tdest : Input destination
// s_axis_tlast : Input EOP (last)
// s_axis_tvalid : Input valid
// s_axis_tready : Input ready
// s_axis_alloc : Input port allocation for switch
// m_axis_tdata : Output data
// m_axis_tdest : Output destination
// m_axis_tlast : Output EOP (last)
// m_axis_tvalid : Output valid
// m_axis_tready : Output ready
//
`default_nettype none
module axis_switch #(
parameter DATA_W = 64,
parameter DEST_W = 1,
parameter IN_PORTS = 3,
parameter OUT_PORTS = 3,
parameter PIPELINE = 1,
parameter ALLOC_W = (IN_PORTS == 1) ? 1 : $clog2(IN_PORTS)
) (
// Clocks and resets
input wire clk,
input wire reset,
// Input ports
input wire [(DATA_W*IN_PORTS)-1:0] s_axis_tdata,
input wire [((DEST_W+$clog2(OUT_PORTS))*IN_PORTS)-1:0] s_axis_tdest,
input wire [IN_PORTS-1:0] s_axis_tlast,
input wire [IN_PORTS-1:0] s_axis_tvalid,
output wire [IN_PORTS-1:0] s_axis_tready,
input wire [ALLOC_W-1:0] s_axis_alloc,
// Output ports
output wire [(DATA_W*OUT_PORTS)-1:0] m_axis_tdata,
output wire [(DEST_W*OUT_PORTS)-1:0] m_axis_tdest,
output wire [OUT_PORTS-1:0] m_axis_tlast,
output wire [OUT_PORTS-1:0] m_axis_tvalid,
input wire [OUT_PORTS-1:0] m_axis_tready
);
localparam CLOG2_OUT_PORTS = $clog2(OUT_PORTS);
//---------------------------------------------------------
// Flatten/unflatten and pipeline
//---------------------------------------------------------
wire [DATA_W-1:0] i_tdata [0:IN_PORTS-1];
wire [DEST_W+$clog2(OUT_PORTS)-1:0] i_tdest [0:IN_PORTS-1];
wire i_tlast [0:IN_PORTS-1];
wire [IN_PORTS-1:0] i_tvalid;
wire [IN_PORTS-1:0] i_tready;
wire [ALLOC_W-1:0] i_alloc;
wire [DATA_W-1:0] o_tdata [0:OUT_PORTS-1];
wire [DEST_W-1:0] o_tdest [0:OUT_PORTS-1];
wire o_tlast [0:OUT_PORTS-1];
wire [OUT_PORTS-1:0] o_tvalid;
wire [OUT_PORTS-1:0] o_tready;
genvar i, o;
generate
for (i = 0; i < IN_PORTS; i = i + 1) begin: in_ports
assign i_tdata [i] = s_axis_tdata [(i*DATA_W)+:DATA_W];
assign i_tdest [i] = s_axis_tdest [(i*(DEST_W+CLOG2_OUT_PORTS))+:(DEST_W+CLOG2_OUT_PORTS)];
assign i_tlast [i] = s_axis_tlast [i];
assign i_tvalid [i] = s_axis_tvalid[i];
assign s_axis_tready[i] = i_tready [i];
end
assign i_alloc = s_axis_alloc; // i_alloc has to be delay-matched to valid
for (o = 0; o < OUT_PORTS; o = o + 1) begin : gen_for_pipeline
if (PIPELINE == 1) begin : gen_pipeline
axi_fifo_flop2 #(.WIDTH(DEST_W+1+DATA_W)) axi_fifo_flop2_i (
.clk(clk), .reset(reset), .clear(1'b0),
.i_tdata({o_tdest[o], o_tlast[o], o_tdata[o]}),
.i_tvalid(o_tvalid[o]), .i_tready(o_tready[o]),
.o_tdata({m_axis_tdest[(o*DEST_W)+:DEST_W], m_axis_tlast[o], m_axis_tdata[(o*DATA_W)+:DATA_W]}),
.o_tvalid(m_axis_tvalid[o]), .o_tready(m_axis_tready[o]),
.space(), .occupied()
);
end else begin : gen_no_pipeline
assign m_axis_tdata [(o*DATA_W)+:DATA_W] = o_tdata [o];
assign m_axis_tdest [(o*DEST_W)+:DEST_W] = o_tdest [o];
assign m_axis_tlast [o] = o_tlast [o];
assign m_axis_tvalid[o] = o_tvalid [o];
assign o_tready [o] = m_axis_tready[o];
end
end
endgenerate
//---------------------------------------------------------
// Allocator
//---------------------------------------------------------
// The "chosen" input port will drive this bus
wire [DATA_W-1:0] master_tdata;
wire [DEST_W+$clog2(OUT_PORTS)-1:0] master_tdest;
wire master_tlast;
wire master_tvalid;
wire master_tready;
generate if (IN_PORTS > 1) begin : gen_mult_in_ports
reg [IN_PORTS-1:0] ialloc_oh;
reg [$clog2(IN_PORTS)-1:0] alloc_reg;
always @(posedge clk) begin
if (reset) begin
ialloc_oh <= {IN_PORTS{1'b0}};
end else begin
if (ialloc_oh == {IN_PORTS{1'b0}}) begin
if (|i_tvalid) begin
ialloc_oh[i_alloc] <= 1'b1;
alloc_reg <= i_alloc;
end
end else begin
if(master_tready & master_tvalid & master_tlast)
ialloc_oh <= {IN_PORTS{1'b0}};
end
end
end
assign master_tdata = i_tdata[alloc_reg];
assign master_tdest = i_tdest[alloc_reg];
assign master_tlast = i_tlast[alloc_reg];
assign master_tvalid = |(i_tvalid & ialloc_oh);
assign i_tready = i_tvalid & ialloc_oh & {IN_PORTS{master_tready}};
end else begin : gen_single_in_port
// Special case: One input port
assign master_tdata = i_tdata[0];
assign master_tdest = i_tdest[0];
assign master_tlast = i_tlast[0];
assign master_tvalid = i_tvalid[0];
assign i_tready[0] = master_tready;
end endgenerate
//---------------------------------------------------------
// Router
//---------------------------------------------------------
generate if (OUT_PORTS > 1) begin : gen_mult_out_ports
reg [OUT_PORTS-1:0] odst_oh;
always @(posedge clk) begin
if (reset) begin
odst_oh <= {OUT_PORTS{1'b0}};
end else begin
if (odst_oh == {OUT_PORTS{1'b0}}) begin
if (master_tvalid)
odst_oh[master_tdest[CLOG2_OUT_PORTS-1:0]] <= 1'b1;
end else begin
if(master_tready & master_tvalid & master_tlast)
odst_oh <= {OUT_PORTS{1'b0}};
end
end
end
assign master_tready = |(o_tready & odst_oh);
assign o_tvalid = {OUT_PORTS{master_tvalid}} & odst_oh;
end else begin : gen_single_out_port
// Special case: One output port
assign master_tready = o_tready[0];
assign o_tvalid[0] = master_tvalid;
end endgenerate
generate for (o = 0; o < OUT_PORTS; o = o + 1) begin : gen_outputs
assign o_tdata[o] = master_tdata;
assign o_tdest[o] = master_tdest[DEST_W+CLOG2_OUT_PORTS-1:CLOG2_OUT_PORTS];
assign o_tlast[o] = master_tlast;
end endgenerate
endmodule
`default_nettype wire
|