1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
//
// Copyright 2023 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: chdr_crossbar_nxn
//
// Description:
//
// This module implements a full-bandwidth NxN crossbar with N input and
// output ports for CHDR traffic. It supports multiple optimization
// strategies for performance, area and timing trade-offs. It uses AXI-Stream
// for all of its links. The crossbar has a dynamic routing table based on a
// Content Addressable Memory (CAM). The SID is used to determine the
// destination of a packet and the routing table contains a re-programmable
// SID to crossbar port mapping. The table is programmed using special route
// config packets on the data input ports or using an optional management
// port.
//
// The topology, routing algorithms and the router architecture is described
// in README.pdf in this directory.
//
// This crossbar also supports multiple port sizes. By default, each port
// will be PORT_W bits wide. This can be changed using the CHDR_WIDTHS
// parameter. This parameter allows the CHDR width of each port to be
// specified. When using multiple CHDR widths, the PORT_W parameter should be
// the size of the widest port. The CHDR_W value reported by the management
// port will be the value specified for that port in CHDR_WIDTHS.
//
// Parameters:
//
// PORT_W : Width of the AXI-Stream data buses s_axis and m_axis. If
// using multiple port widths, this should be set to the
// width of the widest port.
// NPORTS : Number of ports to instantiate.
// CHDR_WIDTHS : Descending array of NUM_PORT integers representing the
// width of each crossbar port. The width of port n is given
// by CHDR_WIDTHS[(N+1)*32-1 : N*32].
// ROUTES : Descending array representing which crossbar routes to
// enable. This is an NPORTS*NPORTS-bit array where bit
// [NPORTS*A + B] corresponds to the path from input port A
// to output port B. A '1' indicates the logic for that route
// is included. All routes are enabled by default.
// EN_ROUTE_FIFO : Set to 1 to include a FIFO on all routes going from a wide
// port to a narrow port. This may improve performance when a
// single wide input port streams to multiple narrow output
// ports by buffering the input data while it's resized for
// the slower output port. This helps to avoid congestion on
// the input port.
// EN_ROUTE_GATE : Set to 1 to include a packet gate on all routes going from
// a narrow port to a wide port. This may improve performance
// when multiple narrow input ports stream to a single wide
// output port by removing idle transfer cycles caused by the
// slower rate of the narrow input port. This helps to avoid
// congestion on the output port.
// DEFAULT_PORT : The fail-safe port to forward a packet to if SID mapping
// is missing.
// BYTE_MTU : log2 of the max packet size in bytes.
// ROUTE_TBL_SIZE: log2 of the number of mappings that the routing table can
// hold at any time. Mapping values are maintained in a FIFO
// fashion.
// MUX_ALLOC : Algorithm to allocate the egress MUX. Possible values:
// * "PRIO": Priority based. Lower port numbers have a
// higher priority
// * "ROUND-ROBIN": Round robin input port allocation
// OPTIMIZE : Optimization strategy for performance vs area vs timing
// trade-offs. Possible values:
// * "AREA": Attempt to minimize area at the cost of
// performance (throughput) and/or timing.
// * "PERFORMANCE": Attempt to maximize performance at the
// cost of area and/or timing.
// * "TIMING": Attempt to maximize Fmax at the cost of area
// and/or performance.
// NPORTS_MGMT : Number of ports with management endpoint. The first
// NPORTS_MGMT ports will have the management port
// instantiated.
// EXT_RTCFG_PORT: Enable a side-channel AXI-Stream management port to
// configure the routing table.
//
// CHDR_WIDTHS Bit Mapping Example (4x4):
//
// Port #: 3 2 1 0
// ↓ ↓ ↓ ↓
// {32'd64, 32'd64, 32'd64, 32'd64}
//
// ROUTES Bit Mapping Example (4x4):
//
// Output Port: 3210
// ↓↓↓↓
// Input Port 3 → {4'b1111,
// Input Port 2 → 4'b1111,
// Input Port 1 → 4'b1111,
// Input Port 0 → 4'b1111}
//
// Ports:
//
// s_axis_* : Slave port for router (flattened)
// m_axis_* : Master port for router (flattened)
// s_axis_mgmt_*: Management slave port
// device_id : The ID of the device that has instantiated this module
//
module chdr_crossbar_nxn #(
parameter [15:0] PROTOVER = {8'd1, 8'd0},
parameter [31:0] PORT_W = 64,
parameter [7:0] NPORTS = 8,
parameter [NPORTS*32-1:0] CHDR_WIDTHS = {NPORTS{PORT_W}},
parameter EN_ROUTE_FIFO = 0,
parameter EN_ROUTE_GATE = 0,
parameter [7:0] DEFAULT_PORT = 0,
parameter [NPORTS**2-1:0] ROUTES = {NPORTS*NPORTS{1'b1}},
parameter BYTE_MTU = $clog2(8192),
parameter ROUTE_TBL_SIZE = 6,
parameter MUX_ALLOC = "ROUND-ROBIN",
parameter OPTIMIZE = "AREA",
parameter [7:0] NPORTS_MGMT = NPORTS,
parameter EXT_RTCFG_PORT = 0
) (
input wire clk,
input wire reset,
// Device info
input wire [15:0] device_id,
// Inputs
input wire [(PORT_W*NPORTS)-1:0] s_axis_tdata,
input wire [NPORTS-1:0] s_axis_tlast,
input wire [NPORTS-1:0] s_axis_tvalid,
output wire [NPORTS-1:0] s_axis_tready,
// Output
output wire [(PORT_W*NPORTS)-1:0] m_axis_tdata,
output wire [NPORTS-1:0] m_axis_tlast,
output wire [NPORTS-1:0] m_axis_tvalid,
input wire [NPORTS-1:0] m_axis_tready,
// Router config management port
input wire ext_rtcfg_stb,
input wire [15:0] ext_rtcfg_addr,
input wire [31:0] ext_rtcfg_data,
output wire ext_rtcfg_ack
);
//---------------------------------------------------------------------------
// RFNoC Includes
//---------------------------------------------------------------------------
`include "../core/rfnoc_chdr_utils.vh"
`include "../core/rfnoc_chdr_internal_utils.vh"
//---------------------------------------------------------------------------
// Parameters
//---------------------------------------------------------------------------
localparam NPORTS_W = $clog2(NPORTS);
localparam EPID_W = 16;
localparam [17:0] EXT_INFO = {1'b0, EXT_RTCFG_PORT, NPORTS_MGMT, NPORTS};
localparam [0:0] PKT_ST_HEAD = 1'b0;
localparam [0:0] PKT_ST_BODY = 1'b1;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// The compute_mux_alloc function is the switch allocation function for the
// MUX. That is, it chooses which input port reserves the output MUX for
// packet transfer.
function [NPORTS_W-1:0] compute_mux_alloc(
input [ NPORTS-1:0] pkt_waiting,
input [NPORTS_W-1:0] last_alloc
);
reg signed [NPORTS_W:0] i;
begin
compute_mux_alloc = last_alloc;
for (i = NPORTS-1; i >= 0; i=i-1) begin
if (MUX_ALLOC == "PRIO") begin
// Priority. Lower port index gets a higher priority.
if (pkt_waiting[i]) begin
compute_mux_alloc = i;
end
end else begin
// Round-robin
if (pkt_waiting[(last_alloc + i + 1) % NPORTS]) begin
compute_mux_alloc = (last_alloc + i + 1) % NPORTS;
end
end
end
end
endfunction
// Return the CHDR width of the given port.
function [31:0] CHDR_W(input integer n);
CHDR_W = CHDR_WIDTHS[32*n +: 32];
endfunction
// Return the MTU size for the given port in terms of its CHDR width.
function [31:0] WORD_MTU(input integer n);
WORD_MTU = BYTE_MTU - $clog2(CHDR_W(n)/8);
endfunction
// Return bit indicating if the route between input port i and output port j
// is enabled.
function [0:0] ROUTE_ENABLED(input integer i, j);
ROUTE_ENABLED = ROUTES[NPORTS*i + j];
endfunction
// Return bit indicating if the given input port has any routes connected to
// it.
function [0:0] INPUT_HAS_ROUTES(input integer i);
INPUT_HAS_ROUTES = |ROUTES[NPORTS*i +: NPORTS];
endfunction
// Return bit indicating if the given output port has any routes connected to
// it.
function automatic [0:0] OUTPUT_HAS_ROUTES(input integer j);
integer i;
begin
OUTPUT_HAS_ROUTES = 1'b0;
for (i = 0; i < NPORTS; i = i+1) begin
OUTPUT_HAS_ROUTES = OUTPUT_HAS_ROUTES | ROUTES[NPORTS*i + j];
end
end
endfunction
//---------------------------------------------------------------------------
// CHDR Routing Table
//---------------------------------------------------------------------------
wire [NPORTS-1:0] rtcfg_req_wr;
wire [(16*NPORTS)-1:0] rtcfg_req_addr;
wire [(32*NPORTS)-1:0] rtcfg_req_data;
wire [NPORTS-1:0] rtcfg_resp_ack;
wire [(EPID_W*NPORTS)-1:0] find_tdata;
wire [NPORTS-1:0] find_tvalid;
wire [NPORTS-1:0] find_tready;
wire [(NPORTS_W*NPORTS)-1:0] result_tdata;
wire [NPORTS-1:0] result_tkeep;
wire [NPORTS-1:0] result_tvalid;
wire [NPORTS-1:0] result_tready;
// Instantiate a single CAM-based routing table that will be shared between
// all input ports. Configuration and lookup is performed using an AXI-Stream
// interface. If multiple packets arrive simultaneously, only the headers of
// those packets will be serialized in order to arbitrate this map. Selection
// is done round-robin.
chdr_xb_routing_table #(
.SIZE(ROUTE_TBL_SIZE), .NPORTS(NPORTS),
.EXT_INS_PORT_EN(EXT_RTCFG_PORT)
) chdr_xb_routing_table_i (
.clk (clk ),
.reset (reset ),
.port_req_wr (rtcfg_req_wr ),
.port_req_addr (rtcfg_req_addr),
.port_req_data (rtcfg_req_data),
.port_resp_ack (rtcfg_resp_ack),
.ext_req_wr (ext_rtcfg_stb ),
.ext_req_addr (ext_rtcfg_addr),
.ext_req_data (ext_rtcfg_data),
.ext_resp_ack (ext_rtcfg_ack ),
.axis_find_tdata (find_tdata ),
.axis_find_tvalid (find_tvalid ),
.axis_find_tready (find_tready ),
.axis_result_tdata (result_tdata ),
.axis_result_tkeep (result_tkeep ),
.axis_result_tvalid(result_tvalid ),
.axis_result_tready(result_tready )
);
wire [PORT_W-1:0] i_tdata [0:NPORTS-1];
wire [9:0] i_tdest [0:NPORTS-1];
wire [1:0] i_tid [0:NPORTS-1];
wire i_tlast [0:NPORTS-1];
wire i_tvalid [0:NPORTS-1];
wire i_tready [0:NPORTS-1];
wire [PORT_W-1:0] buf_tdata [0:NPORTS-1];
wire [NPORTS_W-1:0] buf_tdest [0:NPORTS-1], buf_tdest_tmp[0:NPORTS-1];
wire buf_tkeep [0:NPORTS-1];
wire buf_tlast [0:NPORTS-1];
wire buf_tvalid[0:NPORTS-1];
wire buf_tready[0:NPORTS-1];
wire [PORT_W-1:0] swi_tdata [0:NPORTS-1];
wire [NPORTS_W-1:0] swi_tdest [0:NPORTS-1];
wire swi_tlast [0:NPORTS-1];
wire swi_tvalid[0:NPORTS-1];
wire swi_tready[0:NPORTS-1];
wire [(PORT_W*NPORTS)-1:0] swo_tdata [0:NPORTS-1], muxi_tdata [0:NPORTS-1];
wire [NPORTS-1:0] swo_tlast [0:NPORTS-1], muxi_tlast [0:NPORTS-1];
wire [NPORTS-1:0] swo_tvalid[0:NPORTS-1], muxi_tvalid[0:NPORTS-1];
wire [NPORTS-1:0] swo_tready[0:NPORTS-1], muxi_tready[0:NPORTS-1];
//---------------------------------------------------------------------------
// Port Generation
//---------------------------------------------------------------------------
genvar n, i, j, port;
generate
for (n = 0; n < NPORTS; n = n + 1) begin: gen_in_ports
// Only generate the input logic for this input port if it has routes
if (INPUT_HAS_ROUTES(n)) begin : gen_in_port
//-----------------------------------------------------------------------
// Assertions
//-----------------------------------------------------------------------
// Make sure the width of this port does not exceed the given maximum
// port width.
if (CHDR_W(n) > PORT_W) begin : gen_chdr_w_too_large
ERROR__CHDR_W_must_not_exceed_PORT_W_parameter();
end
// Make sure the port's CHDR width is a valid CHDR width (a power of 2
// and at least 64 bits).
if (2**$clog2(CHDR_W(n)) != CHDR_W(n) || CHDR_W(n) < 64) begin : gen_invalid_chdr_w
ERROR__CHDR_W_is_not_a_valid_CHDR_width();
end
// Make sure the maximum port width is a valid CHDR width (a power of 2
// and at least 64 bits).
if (2**$clog2(PORT_W) != PORT_W || PORT_W < 64) begin : gen_invalid_port_w
ERROR__PORT_W_is_not_a_valid_CHDR_width();
end
//-----------------------------------------------------------------------
// Management Ports
//-----------------------------------------------------------------------
wire [47:0] node_info =
chdr_mgmt_build_node_info(EXT_INFO, n, NODE_TYPE_XBAR, device_id);
// For each input port, first check if we have a management packet
// arriving. If it arrives, the top config commands are extracted, sent
// to the routing table for configuration, and the rest of the packet is
// forwarded down to the router. the router.
if (n < NPORTS_MGMT) begin : gen_mgmt
chdr_mgmt_pkt_handler #(
.PROTOVER (PROTOVER ),
.CHDR_W (CHDR_W(n)),
.MGMT_ONLY (0 )
) chdr_mgmt_pkt_handler_i (
.clk (clk ),
.rst (reset ),
.node_info (node_info ),
.s_axis_chdr_tdata (s_axis_tdata [(n*PORT_W)+:CHDR_W(n)]),
.s_axis_chdr_tlast (s_axis_tlast [n] ),
.s_axis_chdr_tvalid (s_axis_tvalid[n] ),
.s_axis_chdr_tready (s_axis_tready[n] ),
.s_axis_chdr_tuser (1'd0 ),
.m_axis_chdr_tdata (i_tdata [n][CHDR_W(n)-1:0] ),
.m_axis_chdr_tdest (i_tdest [n] ),
.m_axis_chdr_tid (i_tid [n] ),
.m_axis_chdr_tlast (i_tlast [n] ),
.m_axis_chdr_tvalid (i_tvalid [n] ),
.m_axis_chdr_tready (i_tready [n] ),
.ctrlport_req_wr (rtcfg_req_wr [n] ),
.ctrlport_req_rd (/* unused */ ),
.ctrlport_req_addr (rtcfg_req_addr[(n*16)+:16] ),
.ctrlport_req_data (rtcfg_req_data[(n*32)+:32] ),
.ctrlport_resp_ack (rtcfg_resp_ack[n] ),
.ctrlport_resp_data (32'h0 /* unused */ ),
.op_stb (/* unused */ ),
.op_dst_epid (/* unused */ ),
.op_src_epid (/* unused */ ),
.op_data (/* unused */ )
);
end else begin : gen_no_mgmt
assign i_tdata [n] = s_axis_tdata [(n*PORT_W)+:CHDR_W(n)];
assign i_tid [n] = CHDR_MGMT_ROUTE_EPID;
assign i_tdest [n] = 10'd0; // Unused
assign i_tlast [n] = s_axis_tlast [n];
assign i_tvalid [n] = s_axis_tvalid[n];
assign s_axis_tready[n] = i_tready [n];
assign rtcfg_req_wr [n] = 1'b0;
assign rtcfg_req_addr[(n*16)+:16] = 16'h0;
assign rtcfg_req_data[(n*32)+:32] = 32'h0;
end
//-----------------------------------------------------------------------
// Port Ingress Buffer
//-----------------------------------------------------------------------
// Ingress buffer module that does the following:
// - Stores and gates an incoming packet
// - Looks up destination in routing table and attaches a tdest for the packet
chdr_xb_ingress_buff #(
.WIDTH (CHDR_W(n) ),
.MTU (WORD_MTU(n)),
.DEST_W (NPORTS_W ),
.NODE_ID(n )
) chdr_xb_ingress_buff_i (
.clk (clk ),
.reset (reset ),
.s_axis_chdr_tdata (i_tdata [n][CHDR_W(n)-1:0] ),
.s_axis_chdr_tdest (i_tdest [n][NPORTS_W-1:0] ),
.s_axis_chdr_tid (i_tid [n] ),
.s_axis_chdr_tlast (i_tlast [n] ),
.s_axis_chdr_tvalid (i_tvalid [n] ),
.s_axis_chdr_tready (i_tready [n] ),
.m_axis_chdr_tdata (buf_tdata [n][CHDR_W(n)-1:0] ),
.m_axis_chdr_tdest (buf_tdest_tmp[n] ),
.m_axis_chdr_tkeep (buf_tkeep [n] ),
.m_axis_chdr_tlast (buf_tlast [n] ),
.m_axis_chdr_tvalid (buf_tvalid [n] ),
.m_axis_chdr_tready (buf_tready [n] ),
.m_axis_find_tdata (find_tdata [(n*EPID_W)+:EPID_W] ),
.m_axis_find_tvalid (find_tvalid [n] ),
.m_axis_find_tready (find_tready [n] ),
.s_axis_result_tdata (result_tdata [(n*NPORTS_W)+:NPORTS_W]),
.s_axis_result_tkeep (result_tkeep [n] ),
.s_axis_result_tvalid(result_tvalid[n] ),
.s_axis_result_tready(result_tready[n] )
);
assign buf_tdest[n] = buf_tkeep[n] ? buf_tdest_tmp[n] : DEFAULT_PORT[NPORTS_W-1:0];
// Pipeline stage
axi_fifo #(
.WIDTH(CHDR_W(n)+1+NPORTS_W),
.SIZE (1 )
) axi_fifo_i (
.clk (clk ),
.reset (reset ),
.clear (1'b0 ),
.i_tdata ({buf_tlast[n], buf_tdest[n], buf_tdata[n][CHDR_W(n)-1:0]}),
.i_tvalid(buf_tvalid[n] ),
.i_tready(buf_tready[n] ),
.o_tdata ({swi_tlast[n], swi_tdest[n], swi_tdata[n][CHDR_W(n)-1:0]}),
.o_tvalid(swi_tvalid[n] ),
.o_tready(swi_tready[n] ),
.space (/* Unused */ ),
.occupied(/* Unused */ )
);
//-----------------------------------------------------------------------
// Ingress Switch (De-multiplexers)
//-----------------------------------------------------------------------
wire [CHDR_W(n)*NPORTS-1:0] swo_tdata_packed;
// Ingress de-mux. Use the tdest field to determine packet destination.
axis_switch #(
.DATA_W (CHDR_W(n)),
.DEST_W (1 ),
.IN_PORTS (1 ),
.OUT_PORTS(NPORTS ),
.PIPELINE (1 )
) axis_switch_demux (
.clk (clk ),
.reset (reset ),
.s_axis_tdata (swi_tdata[n][CHDR_W(n)-1:0]),
.s_axis_tdest ({1'b0, swi_tdest[n]} ),
.s_axis_tlast (swi_tlast [n] ),
.s_axis_tvalid(swi_tvalid[n] ),
.s_axis_tready(swi_tready[n] ),
.s_axis_alloc (1'b0 ),
.m_axis_tdata (swo_tdata_packed ),
.m_axis_tdest (/* Unused */ ),
.m_axis_tlast (swo_tlast [n] ),
.m_axis_tvalid(swo_tvalid[n] ),
.m_axis_tready(swo_tready[n] )
);
// Unpack the switch output to handle the case where this port's CHDR_W
// is narrower than PORT_W.
for (port = 0; port < NPORTS; port = port+1) begin : gen_switch_output
assign swo_tdata[n][PORT_W*port +: CHDR_W(n)] =
swo_tdata_packed[CHDR_W(n)*port +: CHDR_W(n)];
end
end // gen_in_port
end // gen_in_ports
//-------------------------------------------------------------------------
// Crossbar Routing
//-------------------------------------------------------------------------
// Generate the routing for a full NxN crossbar where i is the input port
// number and j is the output port number. Some paths are resized,
// depending on CHDR_WIDTHS, or excluded, depending on ROUTES.
for (i = 0; i < NPORTS; i = i + 1) begin : gen_for_i
for (j = 0; j < NPORTS; j = j + 1) begin : gen_for_j
if (ROUTE_ENABLED(i,j)) begin : gen_enabled_route
wire [CHDR_W(i)-1:0] rs_i_tdata;
wire rs_i_tlast;
wire rs_i_tvalid;
wire rs_i_tready;
wire [CHDR_W(j)-1:0] rs_o_tdata;
wire rs_o_tlast;
wire rs_o_tvalid;
wire rs_o_tready;
// Connect output j of ingress port i to input i of egress port j.
// Resize the bus if the ports have different widths, otherwise
// directly connect them.
if (CHDR_W(i) != CHDR_W(j)) begin : gen_port_resize
if (CHDR_W(i) > CHDR_W(j) && EN_ROUTE_FIFO) begin : gen_input_fifo
// If we're downsizing, we need a wide FIFO on the input to the
// resize block to buffer the fast incoming packet.
axi_fifo #(
.WIDTH(CHDR_W(i)+1),
.SIZE (WORD_MTU(i))
) axi_fifo_i (
.clk (clk ),
.reset (reset ),
.clear (1'b0 ),
.i_tdata ({swo_tlast[i][j], swo_tdata[i][j*PORT_W+:CHDR_W(i)]}),
.i_tvalid(swo_tvalid[i][j] ),
.i_tready(swo_tready[i][j] ),
.o_tdata ({rs_i_tlast, rs_i_tdata} ),
.o_tvalid(rs_i_tvalid ),
.o_tready(rs_i_tready ),
.space ( ),
.occupied( )
);
end else begin : gen_no_input_fifo
assign rs_i_tdata = swo_tdata[i][j*PORT_W+:CHDR_W(i)];
assign rs_i_tlast = swo_tlast[i][j];
assign rs_i_tvalid = swo_tvalid[i][j];
assign swo_tready[i][j] = rs_i_tready;
end
chdr_resize #(
.I_CHDR_W(CHDR_W(i)),
.O_CHDR_W(CHDR_W(j)),
.I_DATA_W(CHDR_W(i)),
.O_DATA_W(CHDR_W(j)),
.USER_W (1 ),
.PIPELINE("OUT" )
) chdr_resize_i (
.clk (clk ),
.rst (reset ),
.i_chdr_tdata (rs_i_tdata ),
.i_chdr_tuser (1'b0 ),
.i_chdr_tlast (rs_i_tlast ),
.i_chdr_tvalid(rs_i_tvalid),
.i_chdr_tready(rs_i_tready),
.o_chdr_tdata (rs_o_tdata ),
.o_chdr_tuser ( ),
.o_chdr_tlast (rs_o_tlast ),
.o_chdr_tvalid(rs_o_tvalid),
.o_chdr_tready(rs_o_tready)
);
if (CHDR_W(i) < CHDR_W(j) && EN_ROUTE_GATE) begin : gen_output_pkt_gate
// If we are up-sizing, then there will be idle cycles on the
// wider output bus that will waste time on the output mux. To
// maximize throughput on the output port, we gate packets here
// so that we can output a continuous stream of data without idle
// cycles.
axi_packet_gate #(
.WIDTH(CHDR_W(j) ),
.SIZE (WORD_MTU(j))
) axi_packet_gate_i (
.clk (clk ),
.reset (reset ),
.clear (1'b0 ),
.i_tdata (rs_o_tdata ),
.i_tlast (rs_o_tlast ),
.i_terror(1'b0 ),
.i_tvalid(rs_o_tvalid ),
.i_tready(rs_o_tready ),
.o_tdata (muxi_tdata[j][i*PORT_W+:CHDR_W(j)]),
.o_tlast (muxi_tlast[j][i] ),
.o_tvalid(muxi_tvalid[j][i] ),
.o_tready(muxi_tready[j][i] )
);
end else begin : gen_no_output_pkt_gate
assign muxi_tdata[j][i*PORT_W+:CHDR_W(j)] = rs_o_tdata;
assign muxi_tlast[j][i] = rs_o_tlast;
assign muxi_tvalid[j][i] = rs_o_tvalid;
assign rs_o_tready = muxi_tready[j][i];
end
end else begin : gen_port_same_size
assign muxi_tdata[j][i*PORT_W+:CHDR_W(j)] = swo_tdata [i][j*PORT_W+:CHDR_W(i)];
assign muxi_tlast[j][i] = swo_tlast [i][j];
assign muxi_tvalid[j][i] = swo_tvalid [i][j];
assign swo_tready[i][j] = muxi_tready[j][i];
end
end else begin : gen_disabled_route
// Tie off these unused paths so they can be optimized out.
assign muxi_tdata[j][i*PORT_W+:PORT_W] = { PORT_W {1'b0} };
assign muxi_tlast[j][i] = 1'b0;
assign muxi_tvalid[j][i] = 1'b0;
assign swo_tready[i][j] = 1'b1;
end
end
end
//-------------------------------------------------------------------------
// Egress Switch (Multiplexers)
//-------------------------------------------------------------------------
for (n = 0; n < NPORTS; n = n + 1) begin: gen_out_ports
// Only generate egress logic for this output port if it has routes
if (OUTPUT_HAS_ROUTES(n)) begin : gen_out_port
wire [CHDR_W(n)*NPORTS-1:0] muxi_tdata_repacked;
// Repack the mux input to handle the case where this port's CHDR_W is
// narrower than PORT_W.
for (port = 0; port < NPORTS; port = port+1) begin : gen_mux_input
assign muxi_tdata_repacked[CHDR_W(n)*port +: CHDR_W(n)] =
muxi_tdata[n][PORT_W*port +: CHDR_W(n)];
end
if (OPTIMIZE == "PERFORMANCE") begin : gen_performance
// Use the axis_switch module when optimizing for performance
// This logic has some extra levels of logic to ensure
// that the switch allocation happens in 0 clock cycles which
// means that Fmax for this implementation will be lower.
wire mux_ready = |muxi_tready[n]; // Max 1 bit should be high
wire mux_valid = |muxi_tvalid[n];
wire mux_last = |(muxi_tvalid[n] & muxi_tlast[n]);
// Track the input packet state
reg [0:0] pkt_state = PKT_ST_HEAD;
always @(posedge clk) begin
if (reset) begin
pkt_state <= PKT_ST_HEAD;
end else if (mux_valid & mux_ready) begin
pkt_state <= mux_last ? PKT_ST_HEAD : PKT_ST_BODY;
end
end
// The switch requires the allocation to stay valid until the
// end of the packet. We also might need to keep the previous
// packet's allocation to compute the current one
reg [NPORTS_W-1:0] prev_sw_alloc = {NPORTS_W{1'b0}};
reg [NPORTS_W-1:0] pkt_sw_alloc = {NPORTS_W{1'b0}};
wire [NPORTS_W-1:0] muxi_sw_alloc = (mux_valid && pkt_state == PKT_ST_HEAD) ?
compute_mux_alloc(muxi_tvalid[n], prev_sw_alloc) : pkt_sw_alloc;
always @(posedge clk) begin
if (reset) begin
prev_sw_alloc <= {NPORTS_W{1'b0}};
pkt_sw_alloc <= {NPORTS_W{1'b0}};
end else if (mux_valid & mux_ready) begin
if (pkt_state == PKT_ST_HEAD)
pkt_sw_alloc <= muxi_sw_alloc;
if (mux_last)
prev_sw_alloc <= muxi_sw_alloc;
end
end
axis_switch #(
.DATA_W (CHDR_W(n)),
.DEST_W (1 ),
.IN_PORTS (NPORTS ),
.OUT_PORTS (1 ),
.PIPELINE (0 )
) axis_switch_mux (
.clk (clk ),
.reset (reset ),
.s_axis_tdata (muxi_tdata_repacked ),
.s_axis_tdest ({NPORTS{1'b0}} /* Unused */ ),
.s_axis_tlast (muxi_tlast [n] ),
.s_axis_tvalid (muxi_tvalid[n] ),
.s_axis_tready (muxi_tready[n] ),
.s_axis_alloc (muxi_sw_alloc ),
.m_axis_tdata (m_axis_tdata [(n*PORT_W)+:CHDR_W(n)]),
.m_axis_tdest (/* Unused */ ),
.m_axis_tlast (m_axis_tlast [n] ),
.m_axis_tvalid (m_axis_tvalid[n] ),
.m_axis_tready (m_axis_tready[n] )
);
end else begin : gen_not_performance
// axi_mux has an additional bubble cycle but the logic
// to allocate an input port has fewer levels and takes
// up fewer resources.
axi_mux #(
.PRIO (MUX_ALLOC == "PRIO" ),
.WIDTH (CHDR_W(n) ),
.SIZE (NPORTS ),
.PRE_FIFO_SIZE (OPTIMIZE == "TIMING" ? 1 : 0),
.POST_FIFO_SIZE(1 )
) axi_mux_i (
.clk (clk ),
.reset (reset ),
.clear (1'b0 ),
.i_tdata (muxi_tdata_repacked ),
.i_tlast (muxi_tlast [n] ),
.i_tvalid(muxi_tvalid [n] ),
.i_tready(muxi_tready [n] ),
.o_tdata (m_axis_tdata [(n*PORT_W)+:CHDR_W(n)]),
.o_tlast (m_axis_tlast [n] ),
.o_tvalid(m_axis_tvalid[n] ),
.o_tready(m_axis_tready[n] )
);
end
end
end
endgenerate
endmodule
|