1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: dds_wrapper
//
// Description:
//
// This module computes the complex number e^(j*2*pi*phase). The phase input
// can be thought of as a 24-bit unsigned fixed-point value with 24
// fractional bits. In other words, the integer range of the input maps to a
// phase in the range [0, 1.0). The output consists of two 16-bit signed
// fixed-point values with 14 fractional bits. The value sin(2*pi*phase) is
// in the upper 16 bits and cos(2*pi*phase) is in the lower 16-bits. This
// puts the output in {Q,I} order.
//
// This is a wrapper for the dds_sin_cos_lut_only IP, which is based on the
// Xilinx DDS Compiler. This IP has the undesirable behavior that input must
// be provided to flush out any data stuck in its pipeline. This wrapper
// hides that behavior so that every input causes a corresponding output,
// even if the input stops.
//
// NOTE: The DDS IP requires at least 2 cycles of reset.
//
// Parameters:
//
// The parameters in this module should not be modified. They match the IP
// configuration.
//
module dds_wrapper #(
parameter PHASE_W = 24,
parameter OUTPUT_W = 32
) (
input wire clk,
input wire rst,
// Phase input
input wire [ PHASE_W-1:0] s_axis_phase_tdata,
input wire s_axis_phase_tvalid,
input wire s_axis_phase_tlast,
output wire s_axis_phase_tready,
// IQ output (Q in the upper, I in the lower bits)
output wire [OUTPUT_W-1:0] m_axis_data_tdata,
output wire m_axis_data_tvalid,
output wire m_axis_data_tlast,
input wire m_axis_data_tready
);
// Width of number needed to represent the DDS fullness. This value was
// determined experimentally. The max fullness was 33.
localparam FULLNESS_W = 6;
wire [PHASE_W-1:0] phase_tdata;
wire phase_tvalid;
wire phase_tlast;
wire phase_tready;
wire [OUTPUT_W-1:0] dds_tdata;
wire dds_tvalid;
wire dds_tlast;
wire dds_tready;
//---------------------------------------------------------------------------
// DDS Fullness Counter
//---------------------------------------------------------------------------
//
// Count the number of valid samples in the DDS's data pipeline.
//
//---------------------------------------------------------------------------
// The fullness counter must be large enough for DDS's latency.
reg [FULLNESS_W-1:0] fullness = 0;
reg dds_has_data = 0;
wire increment = s_axis_phase_tvalid & s_axis_phase_tready;
wire decrement = m_axis_data_tvalid & m_axis_data_tready;
always @(posedge clk) begin
if (rst) begin
fullness <= 0;
dds_has_data <= 0;
end else begin
if (increment && !decrement) begin
//synthesis translate_off
if (fullness+1'b1 == 1'b0) begin
$display("ERROR: Fullness overflowed!");
end
//synthesis translate_on
fullness <= fullness + 1;
dds_has_data <= 1;
end else if (decrement && !increment) begin
//synthesis translate_off
if (fullness-1'b1 > fullness) begin
$display("ERROR: Fullness underflowed!");
end
//synthesis translate_on
fullness <= fullness - 1;
dds_has_data <= (fullness > 1);
end else begin
dds_has_data <= (fullness > 0);
end
end
end
//---------------------------------------------------------------------------
// Input Logic
//---------------------------------------------------------------------------
assign s_axis_phase_tready = phase_tready;
assign phase_tlast = s_axis_phase_tlast;
assign phase_tdata = s_axis_phase_tdata;
// Always input something when the DDS has data stuck inside it so that all
// data gets flushed out automatically.
assign phase_tvalid = s_axis_phase_tvalid || dds_has_data;
//---------------------------------------------------------------------------
// DDS IP
//---------------------------------------------------------------------------
// Use the TUSER path on the DDS IP to indicate if the sample is empty and is
// just to flush the output.
wire flush_in = ~s_axis_phase_tvalid; // It's a flush if input is not valid
wire flush_out;
dds_sin_cos_lut_only dds_sin_cos_lut_only_i (
.aclk (clk),
.aresetn (~rst),
.s_axis_phase_tvalid (phase_tvalid),
.s_axis_phase_tready (phase_tready),
.s_axis_phase_tdata (phase_tdata),
.s_axis_phase_tlast (phase_tlast),
.s_axis_phase_tuser (flush_in),
.m_axis_data_tvalid (dds_tvalid),
.m_axis_data_tready (dds_tready),
.m_axis_data_tdata (dds_tdata),
.m_axis_data_tlast (dds_tlast),
.m_axis_data_tuser (flush_out)
);
//---------------------------------------------------------------------------
// Output Logic
//---------------------------------------------------------------------------
assign m_axis_data_tdata = dds_tdata;
assign m_axis_data_tlast = dds_tlast;
// Discard the current sample if it was for flushing.
assign m_axis_data_tvalid = dds_tvalid & ~flush_out;
assign dds_tready = m_axis_data_tready | flush_out;
endmodule
|