1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: chdr_convert_down
//
// Description:
//
// Takes a CHDR packet data stream that was generated using a CHDR width
// (I_CHDR_W) that is wider than the current bus width (DATA_W) and reformats
// the packet stream to use the CHDR_W equal to that of the current bus width
// (DATA_W). It does not resize the bus, but rather only changes the CHDR_W
// of the encoded packets.
//
// Packets with different CHDR width have a different maximum number of
// metadata bytes. This module repacks the the metadata into the new word
// size, little-endian ordered. If there is too much metadata for the smaller
// DATA_W packet, then the excess metadata will be discarded.
//
// Parameters:
//
// I_CHDR_W : CHDR_W for the input data stream on i_chdr. Must be larger than
// DATA_W.
// DATA_W : Width of the data bus, and the new CHDR_W for the output data
// stream on o_chdr.
// PIPELINE : Indicates whether to add pipeline stages to the input and/or
// output. This can be: "NONE", "IN", "OUT", or "INOUT".
`default_nettype none
module chdr_convert_down #(
parameter I_CHDR_W = 512,
parameter DATA_W = 64,
parameter PIPELINE = "NONE"
) (
input wire clk,
input wire rst,
// Input
input wire [DATA_W-1:0] i_chdr_tdata,
input wire i_chdr_tlast,
input wire i_chdr_tvalid,
output wire i_chdr_tready,
// Output
output wire [DATA_W-1:0] o_chdr_tdata,
output wire o_chdr_tlast,
output wire o_chdr_tvalid,
input wire o_chdr_tready
);
`include "../core/rfnoc_chdr_utils.vh"
`include "../core/rfnoc_chdr_internal_utils.vh"
// Calculate ceiling(N/D)
`define DIV_CEIL(N,D) (((N)+(D)-1)/(D))
//---------------------------------------------------------------------------
// Check Parameters
//---------------------------------------------------------------------------
generate
if (!(
// Must be reducing the CHDR width
(I_CHDR_W > DATA_W) &&
// CHDR widths must be valid (at least 64 and powers of 2)
(I_CHDR_W >= 64) &&
(DATA_W >= 64) &&
(2**$clog2(I_CHDR_W) == I_CHDR_W) &&
(2**$clog2(DATA_W) == DATA_W) &&
// I_CHDR_W must be a multiple of DATA_W
(I_CHDR_W % DATA_W == 0)
)) begin : gen_error
ERROR__Invalid_CHDR_or_data_width_parameters();
end
endgenerate
//---------------------------------------------------------------------------
// Input Register
//---------------------------------------------------------------------------
wire [DATA_W-1:0] i_pipe_tdata;
wire i_pipe_tlast;
wire i_pipe_tvalid;
reg i_pipe_tready;
if (PIPELINE == "IN" || PIPELINE == "INOUT") begin : gen_in_pipeline
// Add a pipeline stage
axi_fifo_flop2 #(
.WIDTH (1 + DATA_W)
) axi_fifo_flop2_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tdata ({i_chdr_tlast, i_chdr_tdata}),
.i_tvalid (i_chdr_tvalid),
.i_tready (i_chdr_tready),
.o_tdata ({i_pipe_tlast, i_pipe_tdata}),
.o_tvalid (i_pipe_tvalid),
.o_tready (i_pipe_tready),
.space (),
.occupied ()
);
end else begin : gen_no_in_pipeline
assign i_pipe_tdata = i_chdr_tdata;
assign i_pipe_tlast = i_chdr_tlast;
assign i_pipe_tvalid = i_chdr_tvalid;
assign i_chdr_tready = i_pipe_tready;
end
//---------------------------------------------------------------------------
// Downsize State Machine
//---------------------------------------------------------------------------
//
// This state machine does the translation from the larger CHDR_W to the
// smaller CHDR_W by updating the header and dropping empty words.
//
//---------------------------------------------------------------------------
// States
localparam [2:0] ST_HDR = 3'd0; // CHDR header
localparam [2:0] ST_TS = 3'd1; // CHDR timestamp
localparam [2:0] ST_HDR_DROP = 3'd2; // CHDR header, drop unused words
localparam [2:0] ST_MDATA = 3'd3; // CHDR metadata words
localparam [2:0] ST_MDATA_DROP = 3'd4; // CHDR metadata, drop unused words
localparam [2:0] ST_PYLD = 3'd5; // CHDR payload words
localparam [2:0] ST_PYLD_DROP = 3'd6; // CHDR payload, drop unused words
localparam [2:0] ST_MGMT_PYLD = 3'd7; // CHDR management payload words
reg [2:0] state = ST_HDR;
// Determine the number of bits needed to represent the new number of
// metadata words, which might be bigger than the allowed value of 31.
localparam NUM_MDATA_W = $clog2(31*I_CHDR_W/DATA_W + 1);
// Number of output words per input word
localparam NUM_WORDS = I_CHDR_W/DATA_W;
// Determine the number of bits needed to represent a counter to track which
// CHDR words are valid and which are unused and need to be dropped.
localparam COUNT_W = $clog2(NUM_WORDS);
// Determine the maximum number DATA_W-sized payload words. The maximum
// packet size is 2**16-1 bytes, then subtract one word for the smallest
// possible header and convert that to a number of whole CHDR words.
localparam NUM_PYLD_WORDS = `DIV_CEIL((2**16-1) - (DATA_W/8), DATA_W/8);
// Determine the number of bits needed to represent a counter to track which
// O_DATA_W payload word we are processing.
localparam PYLD_COUNT_W = $clog2(NUM_PYLD_WORDS + 1);
// Header info we need to save
reg [ NUM_MDATA_W-1:0] i_num_mdata_reg; // Input packet NumMData in terms of DATA_W words
reg [ 4:0] o_num_mdata_reg; // Output packet NumMData to keep
reg [ 2:0] pkt_type_reg; // Packet type
reg [PYLD_COUNT_W-1:0] pyld_len_reg; // Packet payload length in DATA_W words
reg [PYLD_COUNT_W-1:0] mgmt_pyld_len_reg; // Management payload length in DATA_W words
// Counters (number of DATA_W sized words processed on the input)
reg [ NUM_MDATA_W-1:0] mdata_count;
reg [PYLD_COUNT_W-1:0] pyld_count;
reg [ COUNT_W-1:0] word_count; // Zero based (starts at 0)
// Shortcuts for CHDR header info
wire [ 2:0] pkt_type = chdr_get_pkt_type(i_pipe_tdata[63:0]);
wire [15:0] pyld_len_bytes = chdr_calc_payload_length(I_CHDR_W, i_pipe_tdata[63:0]);
// Calculate the payload length in DATA_W words
wire [PYLD_COUNT_W-1:0] pyld_len = `DIV_CEIL(pyld_len_bytes, DATA_W/8);
// Calculate the payload length of a management packet in words (management
// packets have the same number of payload words, regardless of CHDR width).
wire [PYLD_COUNT_W-1:0] mgmt_pyld_len =
`DIV_CEIL(chdr_calc_payload_length(I_CHDR_W, i_pipe_tdata), I_CHDR_W/8);
// Calculate NumMData from input packet in terms of DATA_W words
wire [NUM_MDATA_W-1:0] i_num_mdata =
chdr_get_num_mdata(i_pipe_tdata[63:0]) * (I_CHDR_W/DATA_W);
// Calculate NumMData for output packet (limit to max of 31)
wire [4:0] o_num_mdata = (i_num_mdata <= 31) ? i_num_mdata : 31;
// Generate packet headers with updated NumMData and Length fields
reg [DATA_W-1:0] new_header;
always @(*) begin
new_header = i_pipe_tdata;
// Update NumMData
new_header[63:0] = chdr_set_num_mdata(new_header, o_num_mdata);
// Update packet length
new_header[63:0] = chdr_update_length(DATA_W, new_header,
(pkt_type == CHDR_PKT_TYPE_MGMT) ? mgmt_pyld_len * (DATA_W/8) : pyld_len_bytes);
end
reg [DATA_W-1:0] new_mgmt_header;
always @(*) begin
// Update the CHDRWidth field in the management header.
new_mgmt_header = i_pipe_tdata;
new_mgmt_header[63:0] =
chdr_mgmt_set_chdr_w(i_pipe_tdata[63:0], chdr_w_to_enum(DATA_W));
end
always @(posedge clk) begin
if (rst) begin
state <= ST_HDR;
mdata_count <= 'bX;
pyld_count <= 'bX;
word_count <= 'bX;
pkt_type_reg <= 'bX;
pyld_len_reg <= 'bX;
mgmt_pyld_len_reg <= 'bX;
i_num_mdata_reg <= 'bX;
o_num_mdata_reg <= 'bX;
end else if (i_pipe_tvalid & i_pipe_tready) begin
// Default assignment
word_count <= word_count + 1;
case (state)
// ST_HDR: CHDR Header
ST_HDR: begin
mdata_count <= 1; // The first metadata word will be word 1
pyld_count <= 1; // The first payload word will be word 1
word_count <= 1; // Word 0 is the current word (header)
pkt_type_reg <= pkt_type;
pyld_len_reg <= pyld_len;
mgmt_pyld_len_reg <= mgmt_pyld_len;
// Save number of DATA_W words of mdata we expect
i_num_mdata_reg <= i_num_mdata;
// Save the number of DATA_W words of mdata we can keep
o_num_mdata_reg <= o_num_mdata;
if (DATA_W == 64) begin
if (pkt_type == CHDR_PKT_TYPE_DATA_TS) begin
// Next word must be the timestamp
state <= ST_TS;
end else begin
// Next word(s) must be empty, so drop it
state <= ST_HDR_DROP;
end
end else begin
// DATA_W >= 128. We should have received the header word and
// timestamp (if present) this clock cycle. Since I_CHDR_W >
// DATA_W, there must be extra words with the header that we need
// to drop.
state <= ST_HDR_DROP;
end
end
// ST_TS: Timestamp (DATA_W == 64 only)
ST_TS: begin
if (I_CHDR_W > 128) begin
state <= ST_HDR_DROP;
end else if (o_num_mdata_reg != 0) begin
state <= ST_MDATA;
end else begin
state <= ST_PYLD;
end
end
// ST_HDR_DROP: CHDR header, drop unused words
ST_HDR_DROP: begin
if (word_count == NUM_WORDS-1) begin
if (o_num_mdata_reg != 0) begin
state <= ST_MDATA;
end else if(pkt_type_reg == CHDR_PKT_TYPE_MGMT) begin
state <= ST_MGMT_PYLD;
end else begin
state <= ST_PYLD;
end
end
end
// ST_MDATA: Metadata words
ST_MDATA: begin
mdata_count <= mdata_count + 1;
if (mdata_count == o_num_mdata_reg) begin
if (mdata_count < i_num_mdata_reg) begin
// There are more MDATA words to deal with than we can fit, so we
// need to drop the rest.
state <= ST_MDATA_DROP;
end else if (pkt_type_reg == CHDR_PKT_TYPE_MGMT) begin
state <= ST_MGMT_PYLD;
end else begin
state <= ST_PYLD;
end
end
end
// ST_MDATA_DROP: Drop excess metadata words
ST_MDATA_DROP: begin
mdata_count <= mdata_count + 1;
if (mdata_count == i_num_mdata_reg) begin
if (pkt_type_reg == CHDR_PKT_TYPE_MGMT) begin
state <= ST_MGMT_PYLD;
end else begin
state <= ST_PYLD;
end
end
end
// ST_PYLD: Payload words
ST_PYLD: begin
pyld_count <= pyld_count + 1;
if (i_pipe_tlast) begin
state <= ST_HDR;
end else if (pyld_count == pyld_len_reg) begin
state <= ST_PYLD_DROP;
end
end
// ST_PYLD_DROP: Payload, drop unused words
ST_PYLD_DROP: begin
// The input packet may have had empty words at the end if the
// payload didn't fill the last CHDR word. We remove those here.
if (i_pipe_tlast) begin
state <= ST_HDR;
end
end
// ST_MGMT_PYLD: Management words
ST_MGMT_PYLD: begin
// Management packets are different from other packet types in that
// the payload is not serialized. In the new DATA_W, we'll have empty
// words we need to discard. When word_count is zero, that's when we
// have a valid word. For all other counts, we want to discard words.
if (word_count == 0) begin
pyld_count <= pyld_count + 1;
end
if (i_pipe_tlast) begin
state <= ST_HDR;
end
end
endcase
end
end
//-----------------------------
// State machine output logic
//-----------------------------
reg [DATA_W-1:0] o_pipe_tdata;
reg o_pipe_tlast;
reg o_pipe_tvalid;
wire o_pipe_tready;
always @(*) begin
case (state)
ST_HDR : begin
o_pipe_tdata = new_header;
o_pipe_tlast = i_pipe_tlast;
o_pipe_tvalid = i_pipe_tvalid;
i_pipe_tready = o_pipe_tready;
end
ST_TS : begin
o_pipe_tdata = i_pipe_tdata;
o_pipe_tlast = i_pipe_tlast;
o_pipe_tvalid = i_pipe_tvalid;
i_pipe_tready = o_pipe_tready;
end
ST_HDR_DROP : begin
o_pipe_tdata = { DATA_W {1'bX} };
o_pipe_tlast = 1'bX;
o_pipe_tvalid = 1'b0;
i_pipe_tready = 1'b1;
end
ST_MDATA : begin
o_pipe_tdata = i_pipe_tdata;
o_pipe_tlast = i_pipe_tlast;
o_pipe_tvalid = i_pipe_tvalid;
i_pipe_tready = o_pipe_tready;
end
ST_MDATA_DROP : begin
o_pipe_tdata = { DATA_W {1'bX} };
o_pipe_tlast = 1'bX;
o_pipe_tvalid = 1'b0;
i_pipe_tready = 1'b1;
end
ST_PYLD : begin
o_pipe_tdata = i_pipe_tdata;
o_pipe_tlast = (pyld_count == pyld_len_reg);
o_pipe_tvalid = i_pipe_tvalid;
i_pipe_tready = o_pipe_tready;
end
ST_PYLD_DROP : begin
o_pipe_tdata = { DATA_W {1'bX} };
o_pipe_tlast = 1'bX;
o_pipe_tvalid = 1'b0;
i_pipe_tready = 1'b1;
end
ST_MGMT_PYLD : begin
if (word_count == 0) begin
o_pipe_tdata = (pyld_count == 1) ? new_mgmt_header : i_pipe_tdata;
o_pipe_tlast = (pyld_count == mgmt_pyld_len_reg);
o_pipe_tvalid = i_pipe_tvalid;
i_pipe_tready = o_pipe_tready;
end else begin
// Drop unused management payload words
o_pipe_tdata = { DATA_W {1'bX} };
o_pipe_tlast = 1'bX;
o_pipe_tvalid = 1'b0;
i_pipe_tready = 1'b1;
end
end
default : begin
o_pipe_tdata = { DATA_W {1'bX} };
o_pipe_tlast = 1'bX;
o_pipe_tvalid = 1'bX;
i_pipe_tready = 1'bX;
end
endcase
end
//---------------------------------------------------------------------------
// Output Register
//---------------------------------------------------------------------------
if (PIPELINE == "OUT" || PIPELINE == "INOUT") begin : gen_out_pipeline
// Add a pipeline stage
axi_fifo_flop2 #(
.WIDTH (1 + DATA_W)
) axi_fifo_flop2_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tdata ({ o_pipe_tlast, o_pipe_tdata }),
.i_tvalid (o_pipe_tvalid),
.i_tready (o_pipe_tready),
.o_tdata ({ o_chdr_tlast, o_chdr_tdata }),
.o_tvalid (o_chdr_tvalid),
.o_tready (o_chdr_tready),
.space (),
.occupied ()
);
end else begin : gen_no_out_pipeline
assign o_chdr_tdata = o_pipe_tdata;
assign o_chdr_tlast = o_pipe_tlast;
assign o_chdr_tvalid = o_pipe_tvalid;
assign o_pipe_tready = o_chdr_tready;
end
endmodule
`default_nettype wire
|