1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
//
// Copyright 2019 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_combiner
//
// Description:
//
// This block is an arbiter that merges control-port interfaces. This block is
// used when you have multiple control-port masters that need to access a
// single slave. For example, a NoC block with multiple submodules that each
// need to read and/or write registers outside of themselves.
//
// This module combines the control-port requests from multiple masters into a
// single request for one slave. Simultaneous requests are handled in the order
// specified by PRIORITY. The responding ACK is routed back to the requester.
//
// The module has been designed so that the latency through it is always the
// same when PRIORITY=1 and there is no contention, so that it can be used in
// applications where deterministic behavior is desired.
//
// Parameters:
//
// NUM_MASTERS : The number of control-port masters to connect to a single
// control-port slave.
// PRIORITY : Use PRIORITY = 0 for round robin arbitration, PRIORITY = 1
// for priority arbitration (lowest number port serviced first).
//
module ctrlport_combiner #(
parameter NUM_MASTERS = 2,
parameter PRIORITY = 0
) (
input wire ctrlport_clk,
input wire ctrlport_rst,
// Requests from multiple masters
input wire [ NUM_MASTERS-1:0] s_ctrlport_req_wr,
input wire [ NUM_MASTERS-1:0] s_ctrlport_req_rd,
input wire [20*NUM_MASTERS-1:0] s_ctrlport_req_addr,
input wire [10*NUM_MASTERS-1:0] s_ctrlport_req_portid,
input wire [16*NUM_MASTERS-1:0] s_ctrlport_req_rem_epid,
input wire [10*NUM_MASTERS-1:0] s_ctrlport_req_rem_portid,
input wire [32*NUM_MASTERS-1:0] s_ctrlport_req_data,
input wire [ 4*NUM_MASTERS-1:0] s_ctrlport_req_byte_en,
input wire [ NUM_MASTERS-1:0] s_ctrlport_req_has_time,
input wire [64*NUM_MASTERS-1:0] s_ctrlport_req_time,
// Responses to multiple masters
output reg [ NUM_MASTERS-1:0] s_ctrlport_resp_ack,
output reg [ 2*NUM_MASTERS-1:0] s_ctrlport_resp_status,
output reg [32*NUM_MASTERS-1:0] s_ctrlport_resp_data,
// Request to a single slave
output reg m_ctrlport_req_wr,
output reg m_ctrlport_req_rd,
output reg [19:0] m_ctrlport_req_addr,
output reg [ 9:0] m_ctrlport_req_portid,
output reg [15:0] m_ctrlport_req_rem_epid,
output reg [ 9:0] m_ctrlport_req_rem_portid,
output reg [31:0] m_ctrlport_req_data,
output reg [ 3:0] m_ctrlport_req_byte_en,
output reg m_ctrlport_req_has_time,
output reg [63:0] m_ctrlport_req_time,
// Response from a single slave
input wire m_ctrlport_resp_ack,
input wire [ 1:0] m_ctrlport_resp_status,
input wire [31:0] m_ctrlport_resp_data
);
reg [$clog2(NUM_MASTERS)-1:0] slave_sel = 0; // Tracks which slave port is
// currently being serviced.
reg req_load_output = 1'b0;
// Helper function to convert one hot vector to binary index
// (LSB = index 0)
function integer one_hot_to_binary(input [NUM_MASTERS-1:0] one_hot_vec);
integer i, total;
begin
total = 0;
for (i = 0; i <= NUM_MASTERS-1; i = i + 1) begin
if (one_hot_vec[i]) begin
total = total + i;
end
end
one_hot_to_binary = total;
end
endfunction
//---------------------------------------------------------------------------
// Input Registers
//---------------------------------------------------------------------------
//
// Latch each request until it can be serviced. Only one request per slave
// can be in progress at a time.
//
//---------------------------------------------------------------------------
reg [ NUM_MASTERS-1:0] req_valid = 0;
reg [ NUM_MASTERS-1:0] req_wr;
reg [ NUM_MASTERS-1:0] req_rd;
reg [20*NUM_MASTERS-1:0] req_addr;
reg [10*NUM_MASTERS-1:0] req_portid;
reg [16*NUM_MASTERS-1:0] req_rem_epid;
reg [10*NUM_MASTERS-1:0] req_rem_portid;
reg [32*NUM_MASTERS-1:0] req_data;
reg [ 4*NUM_MASTERS-1:0] req_byte_en;
reg [ NUM_MASTERS-1:0] req_has_time;
reg [64*NUM_MASTERS-1:0] req_time;
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
req_valid <= 0;
end else begin : input_reg_gen
integer i;
for (i = 0; i < NUM_MASTERS; i = i + 1) begin
if (s_ctrlport_req_wr[i] | s_ctrlport_req_rd[i]) begin
// Mark this slave's request valid and save the request information
req_valid[i] <= 1'b1;
req_wr[i] <= s_ctrlport_req_wr[i];
req_rd[i] <= s_ctrlport_req_rd[i];
req_addr[20*i+:20] <= s_ctrlport_req_addr[20*i+:20];
req_portid[10*i+:10] <= s_ctrlport_req_portid[10*i+:10];
req_rem_epid[16*i+:16] <= s_ctrlport_req_rem_epid[16*i+:16];
req_rem_portid[10*i+:10] <= s_ctrlport_req_rem_portid[10*i+:10];
req_data[32*i+:32] <= s_ctrlport_req_data[32*i+:32];
req_byte_en[4*i+:4] <= s_ctrlport_req_byte_en[4*i+:4];
req_has_time[i] <= s_ctrlport_req_has_time[i];
req_time[64*i+:64] <= s_ctrlport_req_time[64*i+:64];
end
end
// Clear the active request when it gets output
if (req_load_output) begin
req_valid[slave_sel] <= 1'b0;
end
end
end
//---------------------------------------------------------------------------
// Arbitration State Machine
//---------------------------------------------------------------------------
//
// This state machine tracks which slave port is being serviced and which to
// service next. This is done using a counter that simply checks each port in
// sequential order and then stops when it finds one that has a valid request.
//
//---------------------------------------------------------------------------
reg req_active = 0; // Indicates if there's a request being serviced
wire [NUM_MASTERS-1:0] next_slave_one_hot; // one hot for next active request
// (used for PRIORITY = 1)
generate
genvar i;
for (i = 0; i < NUM_MASTERS; i = i+1) begin : gen_next_slave_one_hot
if (i == 0) begin
assign next_slave_one_hot[i] = req_valid[i];
end else begin
assign next_slave_one_hot[i] = req_valid[i] & ~next_slave_one_hot[i-1];
end
end
endgenerate
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
slave_sel <= 0;
req_active <= 1'b0;
req_load_output <= 1'b0;
end else begin
req_load_output <= 1'b0;
if (req_active) begin
// Wait until we get the response before we allow another request
if (m_ctrlport_resp_ack) begin
req_active <= 1'b0;
// Go to next slave immediately
if(PRIORITY == 1)
slave_sel <= one_hot_to_binary(next_slave_one_hot);
// Round robin - Go to the next slave so we don't service the same
// slave again
else if(slave_sel == NUM_MASTERS-1)
slave_sel <= 0;
else
slave_sel <= slave_sel + 1;
end
end else begin
// No active request in progress, so check if there's a new request on
// the selected slave.
if (req_valid[slave_sel]) begin
req_active <= 1'b1;
req_load_output <= 1'b1;
end else begin
// Go to next slave immediately
if(PRIORITY == 1)
slave_sel <= one_hot_to_binary(next_slave_one_hot);
// Round robin - Nothing from this slave, so move to the next slave.
else if (slave_sel == NUM_MASTERS-1)
slave_sel <= 0;
else
slave_sel <= slave_sel + 1;
end
end
end
end
//---------------------------------------------------------------------------
// Output Register
//---------------------------------------------------------------------------
//
// Here we load the active request for a single clock cycle and demultiplex
// the response back to the requesting master.
//
//---------------------------------------------------------------------------
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
m_ctrlport_req_wr <= 1'b0;
m_ctrlport_req_rd <= 1'b0;
end else begin : output_reg_gen
integer i;
// Load the active request
if (req_load_output) begin
m_ctrlport_req_wr <= req_wr [slave_sel];
m_ctrlport_req_rd <= req_rd [slave_sel];
m_ctrlport_req_addr <= req_addr [20*slave_sel +: 20];
m_ctrlport_req_portid <= req_portid [10*slave_sel +: 10];
m_ctrlport_req_rem_epid <= req_rem_epid [16*slave_sel +: 16];
m_ctrlport_req_rem_portid <= req_rem_portid[10*slave_sel +: 10];
m_ctrlport_req_data <= req_data [32*slave_sel +: 32];
m_ctrlport_req_byte_en <= req_byte_en [ 4*slave_sel +: 4];
m_ctrlport_req_has_time <= req_has_time [slave_sel];
m_ctrlport_req_time <= req_time [64*slave_sel +: 64];
end else begin
m_ctrlport_req_wr <= 1'b0;
m_ctrlport_req_rd <= 1'b0;
end
// Output any response to the master that made the request
for (i = 0; i < NUM_MASTERS; i = i + 1) begin
// Give the response data to all the slaves (no demux, to save logic)
s_ctrlport_resp_status[2*i +: 2] <= m_ctrlport_resp_status;
s_ctrlport_resp_data[32*i +: 32] <= m_ctrlport_resp_data;
// Give the ack only to the master that made the request (use a demux)
if (i == slave_sel && m_ctrlport_resp_ack) begin
s_ctrlport_resp_ack[i] <= 1'b1;
end else begin
s_ctrlport_resp_ack[i] <= 1'b0;
end
end
end
end
endmodule
|