1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
//
// Copyright 2019 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_decoder
//
// Description:
//
// This block splits a single control port interface into multiple. It is used
// when you have a single master that needs to access multiple slaves. For
// example, a NoC block where the registers are implemented in multiple
// submodules that must be read/written by a single NoC shell.
//
// This version also implements address decoding. The request is passed to a
// slave only if the address falls within that slave's address space. Each
// slave is given an address space of 2**ADDR_W and the first slave starts at
// address BASE_ADDR. In other words, the request address is partitioned as
// shown below.
//
// |---------------- 32-bit -----------------|
// | Base | Port Num | Slave Addr |
// |-----------------------------------------|
//
// When passed to the slave, the base address and port number bits are stripped
// from the request address and only the SLAVE_ADDR_W-bit address is passed
// through.
//
// Parameters:
//
// NUM_SLAVES : Number of slave devices that you want to connect to master.
// BASE_ADDR : Base address for slave 0. This should be a power-of-2
// multiple of the combined slave address spaces.
// SLAVE_ADDR_W : Number of address bits to allocate to each slave.
//
module ctrlport_decoder #(
parameter NUM_SLAVES = 2,
parameter BASE_ADDR = 0,
parameter SLAVE_ADDR_W = 8
) (
input wire ctrlport_clk,
input wire ctrlport_rst,
// Slave Interface
input wire s_ctrlport_req_wr,
input wire s_ctrlport_req_rd,
input wire [19:0] s_ctrlport_req_addr,
input wire [31:0] s_ctrlport_req_data,
input wire [ 3:0] s_ctrlport_req_byte_en,
input wire s_ctrlport_req_has_time,
input wire [63:0] s_ctrlport_req_time,
output reg s_ctrlport_resp_ack = 1'b0,
output reg [ 1:0] s_ctrlport_resp_status,
output reg [31:0] s_ctrlport_resp_data,
// Master Interfaces
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_wr = 0,
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_rd = 0,
output reg [20*NUM_SLAVES-1:0] m_ctrlport_req_addr = 0,
output reg [32*NUM_SLAVES-1:0] m_ctrlport_req_data,
output reg [ 4*NUM_SLAVES-1:0] m_ctrlport_req_byte_en,
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_has_time,
output reg [64*NUM_SLAVES-1:0] m_ctrlport_req_time,
input wire [ NUM_SLAVES-1:0] m_ctrlport_resp_ack,
input wire [ 2*NUM_SLAVES-1:0] m_ctrlport_resp_status,
input wire [32*NUM_SLAVES-1:0] m_ctrlport_resp_data
);
localparam PORT_NUM_W = $clog2(NUM_SLAVES);
localparam PORT_NUM_POS = SLAVE_ADDR_W;
localparam BASE_ADDR_W = 20 - (SLAVE_ADDR_W + PORT_NUM_W);
localparam BASE_ADDR_POS = SLAVE_ADDR_W + PORT_NUM_W;
localparam [19:0] BASE_ADDR_MASK = { BASE_ADDR_W {1'b1}} << BASE_ADDR_POS;
//---------------------------------------------------------------------------
// Split the requests among the slaves
//---------------------------------------------------------------------------
wire [NUM_SLAVES-1:0] decoder;
generate
genvar i;
for (i = 0; i < NUM_SLAVES; i = i+1) begin : gen_split
// Check if the upper bits of the request address match each slave. If the
// address matches, set the corresponding decoder[] bit.
if (PORT_NUM_W == 0) begin
// Only one port in this case, so there are no port number bits to check
assign decoder[i] = ((s_ctrlport_req_addr & BASE_ADDR_MASK) == BASE_ADDR);
end else begin
assign decoder[i] = ((s_ctrlport_req_addr & BASE_ADDR_MASK) == BASE_ADDR) &&
(s_ctrlport_req_addr[PORT_NUM_POS +: PORT_NUM_W] == i);
end
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
m_ctrlport_req_wr[i] <= 1'b0;
m_ctrlport_req_rd[i] <= 1'b0;
end else begin
// Mask WR and RD based on address decoding
m_ctrlport_req_wr[i] <= s_ctrlport_req_wr & decoder[i];
m_ctrlport_req_rd[i] <= s_ctrlport_req_rd & decoder[i];
// Other values pass through to all slaves, but should be ignored
// unless the corresponding WR or RD is not asserted.
m_ctrlport_req_data [32*i +: 32] <= s_ctrlport_req_data;
m_ctrlport_req_byte_en [4*i +: 4] <= s_ctrlport_req_byte_en;
m_ctrlport_req_has_time[i] <= s_ctrlport_req_has_time;
m_ctrlport_req_time [64*i +: 64] <= s_ctrlport_req_time;
// Pass through only the relevant slave bits
m_ctrlport_req_addr[20*i+:20] <= 20'b0;
m_ctrlport_req_addr[20*i+:SLAVE_ADDR_W] <= s_ctrlport_req_addr[SLAVE_ADDR_W-1:0];
end
end
end
endgenerate
//---------------------------------------------------------------------------
// Decode the responses
//---------------------------------------------------------------------------
reg [31:0] data;
reg [ 1:0] status;
reg ack = 0;
// Take the responses and mask them with ack, then OR them together
always @(*) begin : comb_decode
integer s;
data = 0;
status = 0;
ack = 0;
for (s = 0; s < NUM_SLAVES; s = s+1) begin
data = data | (m_ctrlport_resp_data [s*32 +: 32] & {32{m_ctrlport_resp_ack[s]}});
status = status | (m_ctrlport_resp_status[s* 2 +: 2] & { 2{m_ctrlport_resp_ack[s]}});
ack = ack | m_ctrlport_resp_ack[s];
end
end
// Register the output to break combinatorial path
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
s_ctrlport_resp_ack <= 0;
end else begin
s_ctrlport_resp_data <= data;
s_ctrlport_resp_status <= status;
s_ctrlport_resp_ack <= ack;
end
end
endmodule
|