1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
//
// Copyright 2019 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_decoder_param
//
// Description:
//
// This block splits a single control port interface into multiple. It is
// used when you have a single master that needs to access multiple slaves.
// For example, a NoC block where the registers are implemented in multiple
// submodules that must be read/written by a single NoC shell.
//
// This version also implements address decoding. The request is passed to a
// slave only if the address falls within that slave's address space. Each
// slave can have a unique base address and address space size. The address
// space is broken up as follows.
//
// PORT_BASE[0*20 +: 20] = Port 0 base address
// │ ┐
// │ ├── 2**PORT_ADDR_W[0*32 +: 32] bytes for slave 0
// │ ┘
// .
// .
// PORT_BASE[1*20 +: 20] = Port 1 base address
// │ ┐
// │ ├── 2**PORT_ADDR_W[1*32 +: 32] bytes for slave 1
// │ ┘
// .
// .
//
// When passed to the slave, the base address is stripped from the request
// address so that only the PORT_ADDR_W-bit address is passed through.
//
// Parameters:
//
// NUM_SLAVES : The number of slaves to connect to a master.
//
// PORT_BASE : Base addresses to use fore each slave. This is a
// concatenation of 20-bit addresses, where the right-most
// (least-significant) 20 bits corresponds to slave 0. Each
// address must be a multiple of 2**PORT_ADDR_W, where
// PORT_ADDR_W is the number of address bits allocated to that
// slave.
//
// PORT_ADDR_W : Number of address bits to allocate to each slave. This is a
// concatenation of 32-bit integers, where the right-most
// (least-significant) 32 bits corresponds to the address space
// for slave 0.
//
module ctrlport_decoder_param #(
parameter NUM_SLAVES = 4,
parameter PORT_BASE = { 20'h300, 20'h200, 20'h100, 20'h000 },
parameter PORT_ADDR_W = { 32'd8, 32'd8, 32'd8, 32'd8 }
) (
input wire ctrlport_clk,
input wire ctrlport_rst,
// Slave Interface
input wire s_ctrlport_req_wr,
input wire s_ctrlport_req_rd,
input wire [19:0] s_ctrlport_req_addr,
input wire [31:0] s_ctrlport_req_data,
input wire [ 3:0] s_ctrlport_req_byte_en,
input wire s_ctrlport_req_has_time,
input wire [63:0] s_ctrlport_req_time,
output reg s_ctrlport_resp_ack = 1'b0,
output reg [ 1:0] s_ctrlport_resp_status,
output reg [31:0] s_ctrlport_resp_data,
// Master Interfaces
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_wr = 0,
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_rd = 0,
output reg [20*NUM_SLAVES-1:0] m_ctrlport_req_addr = 0,
output reg [32*NUM_SLAVES-1:0] m_ctrlport_req_data,
output reg [ 4*NUM_SLAVES-1:0] m_ctrlport_req_byte_en,
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_has_time,
output reg [64*NUM_SLAVES-1:0] m_ctrlport_req_time,
input wire [ NUM_SLAVES-1:0] m_ctrlport_resp_ack,
input wire [ 2*NUM_SLAVES-1:0] m_ctrlport_resp_status,
input wire [32*NUM_SLAVES-1:0] m_ctrlport_resp_data
);
//---------------------------------------------------------------------------
// Address Decode Logic
//---------------------------------------------------------------------------
//
// Check if the upper bits of the request address match each slave. If the
// address matches, set the corresponding dec_mask[] bit.
//
//---------------------------------------------------------------------------
wire [NUM_SLAVES-1:0] dec_mask; // Address decoder mask
generate
genvar i;
for (i = 0; i < NUM_SLAVES; i = i+1) begin : gen_dec_mask
localparam [19:0] BASE_ADDR = PORT_BASE [i*20 +: 20];
localparam [31:0] ADDR_W = PORT_ADDR_W[i*32 +: 32];
assign dec_mask[i] = ~|((s_ctrlport_req_addr ^ BASE_ADDR) & ((~0) << ADDR_W));
end
//---------------------------------------------------------------------------
// Split the requests among the slaves
//---------------------------------------------------------------------------
for (i = 0; i < NUM_SLAVES; i = i+1) begin : gen_split
localparam [31:0] ADDR_W = PORT_ADDR_W[i*32 +: 32];
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
m_ctrlport_req_wr[i] <= 1'b0;
m_ctrlport_req_rd[i] <= 1'b0;
end else begin
// Mask WR and RD based on address decoding
m_ctrlport_req_wr[i] <= s_ctrlport_req_wr & dec_mask[i];
m_ctrlport_req_rd[i] <= s_ctrlport_req_rd & dec_mask[i];
// Other values pass through to all slaves, but should be ignored
// unless WR or RD is asserted.
m_ctrlport_req_data [32*i +: 32] <= s_ctrlport_req_data;
m_ctrlport_req_byte_en [4*i +: 4] <= s_ctrlport_req_byte_en;
m_ctrlport_req_has_time[i] <= s_ctrlport_req_has_time;
m_ctrlport_req_time [64*i +: 64] <= s_ctrlport_req_time;
// Mask the address bits to that of the slaves address space.
m_ctrlport_req_addr[20*i +: 20] <= 20'b0;
m_ctrlport_req_addr[20*i +: ADDR_W] <= s_ctrlport_req_addr[ADDR_W-1 : 0];
end
end
end
endgenerate
//---------------------------------------------------------------------------
// Decode the responses
//---------------------------------------------------------------------------
reg [31:0] data;
reg [ 1:0] status;
reg ack = 0;
// Take the responses and mask them with ack, then OR them together
always @(*) begin : comb_decode
integer s;
data = 0;
status = 0;
ack = 0;
for (s = 0; s < NUM_SLAVES; s = s+1) begin
data = data | (m_ctrlport_resp_data [s*32 +: 32] & {32{m_ctrlport_resp_ack[s]}});
status = status | (m_ctrlport_resp_status[s* 2 +: 2] & { 2{m_ctrlport_resp_ack[s]}});
ack = ack | m_ctrlport_resp_ack[s];
end
end
// Register the output to break combinatorial path
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
s_ctrlport_resp_ack <= 0;
end else begin
s_ctrlport_resp_data <= data;
s_ctrlport_resp_status <= status;
s_ctrlport_resp_ack <= ack;
end
end
endmodule
|