1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
//
// Copyright 2019 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_reg_rw
//
// Description:
//
// Implements a read/write register on a CTRL Port bus. CTRL Port byte
// enables are supported on writes. All input addresses are assumed to be
// 32-bit word aligned.
//
// The width of the register is configurable. The register will take up the
// full power-of-2 address region, with a minimum of a 4-byte region. For
// example:
//
// WIDTH (Bits) │ Address Space (Bytes)
// ──────────────┼───────────────────────
// 1 to 32 │ 4
// 33 to 64 │ 8
// 64 to 128 │ 16
// etc. │ etc.
//
// When COHERENCY is true and the WIDTH is larger than a single CTRL Port
// word (32 bits), writing the least-significant words of the register causes
// them to be saved in a cache register and does not immediately update those
// words in the register. Writing the most-significant word of the register
// causes all the words to be simultaneously written to the register. This
// allows writes of large, multi-word registers to be coherent. This is very
// important for registers in which there is a relationship between the upper
// and lower bits, such as in a counter value in which changing only part of
// the word at a time could be seen as a large change when in fact the final
// change is small. The most-significant word MUST always be written last
// when COHERENCY is true.
//
// Parameters:
//
// ADDR : Byte address to use for this register. This address must be
// aligned to the size of the register.
// WIDTH : Width of register to implement in bits. This determines the
// width of the "value_out" input and the amount of address space
// used by the register, which is always a power of 2.
// COHERENT : Setting to 1 implements additional logic so that register
// writes maintain coherency. Setting to 0 removes this logic, so
// that each 32-bit word of the register is treated independently.
// RESET_VAL : Value to give the register at power-on and at reset.
//
// Ports:
//
// *ctrlport* : CTRL Port interface.
// value_out : The current value of the register.
// written : A strobe (single-cycle pulse) that indicates when the
// register was written. The new value may or may not be the
// same as the old value.
//
module ctrlport_reg_rw #(
parameter [ 19:0] ADDR = 0,
parameter WIDTH = 32,
parameter COHERENT = 0,
parameter [WIDTH-1:0] RESET_VAL = 'h0
) (
input wire ctrlport_clk,
input wire ctrlport_rst,
input wire s_ctrlport_req_wr,
input wire s_ctrlport_req_rd,
input wire [19:0] s_ctrlport_req_addr,
input wire [31:0] s_ctrlport_req_data,
input wire [ 3:0] s_ctrlport_req_byte_en,
output wire s_ctrlport_resp_ack,
output wire [ 1:0] s_ctrlport_resp_status,
output reg [31:0] s_ctrlport_resp_data,
output wire [WIDTH-1:0] value_out,
output reg written
);
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
function automatic integer max(input integer a, b);
max = a > b ? a : b;
endfunction
//---------------------------------------------------------------------------
// Local Parameters
//---------------------------------------------------------------------------
// Calculate the number of bytes of address space this register will take up.
// The minimum size is a 32-bit register (4 bytes).
localparam NUM_BYTES = max(4, 2**$clog2(WIDTH)/8);
// Calculate the number of bits needed to index each byte of this register.
localparam BYTE_ADDR_W = $clog2(NUM_BYTES);
// Calculate the number of bits needed to index each 32-bit word of this
// register.
localparam WORD_ADDR_W = BYTE_ADDR_W-2;
//---------------------------------------------------------------------------
// Parameter Checking
//---------------------------------------------------------------------------
// Make sure WIDTH is valid
if (WIDTH < 1) begin
WIDTH_must_be_at_least_1();
end
// Make sure the address is word-aligned to the size of the register
if (ADDR[BYTE_ADDR_W-1:0] != 0) begin
ADDR_must_be_aligned_to_the_size_of_the_register();
end
//---------------------------------------------------------------------------
// Write Logic
//---------------------------------------------------------------------------
// Use full size to simplify indexing. Unused bits will be optimized away.
reg [8*NUM_BYTES-1:0] reg_val = 0;
reg [8*NUM_BYTES-1:0] write_cache_reg;
reg [ NUM_BYTES-1:0] write_en_cache_reg;
reg s_ctrlport_resp_ack_wr;
integer b, w;
//
// Coherent implementation
//
if (WIDTH > 32 && COHERENT) begin : gen_coherent
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
reg_val <= RESET_VAL;
written <= 1'b0;
end else begin
// Check if any part of this register is being written to
if (s_ctrlport_req_addr[19 : BYTE_ADDR_W] == ADDR[19 : BYTE_ADDR_W] && s_ctrlport_req_wr) begin
s_ctrlport_resp_ack_wr <= 1'b1;
// Check if we're writing the most-significant word
if (s_ctrlport_req_addr[BYTE_ADDR_W-1 : 2] == {BYTE_ADDR_W-2{1'b1}}) begin
written <= 1'b1;
// Iterate over the 4 bytes, updating each based on byte_en
for (b = 0; b < 4; b = b+1) begin
// Update the most-significant word from the input
if(s_ctrlport_req_byte_en[b]) begin
reg_val[32*(NUM_BYTES/4-1)+b*8 +: 8] <= s_ctrlport_req_data[8*b +: 8];
end
// Update the least-significant words from the cache
for (w = 0; w < NUM_BYTES/4; w = w+1) begin
if (write_en_cache_reg[b]) begin
reg_val[32*w+b*8 +: 8] <= write_cache_reg[32*w+b*8 +: 8];
end
end
end
// We're writing one of the least-significant words, so just cache
// the values written.
end else begin
w = s_ctrlport_req_addr[2 +: WORD_ADDR_W];
write_cache_reg[w*32 +: 32] <= s_ctrlport_req_data;
write_en_cache_reg[w*4 +: 4] <= s_ctrlport_req_byte_en;
end
end else begin
s_ctrlport_resp_ack_wr <= 1'b0;
written <= 1'b0;
end
end
end
//
// Non-coherent implementation
//
end else begin : gen_no_coherent
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
reg_val <= RESET_VAL;
written <= 1'b0;
end else begin
// Check if any part of the word is begin written to
if (s_ctrlport_req_addr[19 : BYTE_ADDR_W] == ADDR[19 : BYTE_ADDR_W] && s_ctrlport_req_wr) begin
for (b = 0; b < 4; b = b + 1) begin
if (s_ctrlport_req_byte_en[b]) begin
if (WORD_ADDR_W > 0) begin
// Update only the word of the register being addressed. "max"
// is needed by Vivado here to elaborate when WORD_ADDR_W is 0.
w = s_ctrlport_req_addr[2 +: max(1, WORD_ADDR_W)];
reg_val[w*32+b*8 +: 8] <= s_ctrlport_req_data[8*b +: 8];
end else begin
reg_val[b*8 +: 8] <= s_ctrlport_req_data[8*b +: 8];
end
end
end
s_ctrlport_resp_ack_wr <= 1'b1;
written <= 1'b1;
end else begin
s_ctrlport_resp_ack_wr <= 1'b0;
written <= 1'b0;
end
end
end
end
//---------------------------------------------------------------------------
// Read Logic
//---------------------------------------------------------------------------
reg s_ctrlport_resp_ack_rd;
assign s_ctrlport_resp_status = 0; // Status is always "OK" (0)
assign value_out = reg_val[WIDTH-1:0];
// Because the register is only changed by software, read coherency is not
// required, so we just return the word that's being addressed.
always @(posedge ctrlport_clk) begin
// Check if any part of this register is being addressed
if (s_ctrlport_req_addr[19 : BYTE_ADDR_W] == ADDR[19 : BYTE_ADDR_W] && s_ctrlport_req_rd) begin
s_ctrlport_resp_ack_rd <= 1'b1;
if (WORD_ADDR_W > 0) begin
// Read back only the word of the register being addressed
s_ctrlport_resp_data <= reg_val[s_ctrlport_req_addr[2 +: WORD_ADDR_W]*32 +: 32];
end else begin
s_ctrlport_resp_data <= reg_val[31:0];
end
end else begin
s_ctrlport_resp_ack_rd <= 1'b0;
end
end
// Combine read/write ack
assign s_ctrlport_resp_ack = s_ctrlport_resp_ack_wr | s_ctrlport_resp_ack_rd;
endmodule
|