1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
//
// Copyright 2019 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_splitter
//
// Description:
//
// This block splits a single control port interface into multiple. It is used
// when you have a single master that needs to access multiple slaves. For
// example, a NoC block where the registers are implemented in multiple
// submodules that must be read/written by a single NoC shell.
//
// Note that this block does not do any address decoding, so the connected
// slaves must use non-overlapping address spaces.
//
// This module takes the request received by its single slave interface and
// outputs it on all its master interfaces. In the opposite direction, it takes
// the responses received by its multiple master interfaces and combines them
// into a single response on its slave interface. This is done by using the ack
// bit of each response to mask the other bits of the response, then OR'ing all
// of the masked responses together onto a single response bus. This is valid
// because only one block is allowed to respond to a single request.
//
// Parameters:
//
// NUM_SLAVES : The number of slaves you want to connect to a master.
//
module ctrlport_splitter #(
parameter NUM_SLAVES = 2
) (
input wire ctrlport_clk,
input wire ctrlport_rst,
// Slave Interface
input wire s_ctrlport_req_wr,
input wire s_ctrlport_req_rd,
input wire [19:0] s_ctrlport_req_addr,
input wire [31:0] s_ctrlport_req_data,
input wire [ 3:0] s_ctrlport_req_byte_en,
input wire s_ctrlport_req_has_time,
input wire [63:0] s_ctrlport_req_time,
output reg s_ctrlport_resp_ack = 1'b0,
output reg [ 1:0] s_ctrlport_resp_status,
output reg [31:0] s_ctrlport_resp_data,
// Master Interfaces
output wire [ NUM_SLAVES-1:0] m_ctrlport_req_wr,
output wire [ NUM_SLAVES-1:0] m_ctrlport_req_rd,
output wire [20*NUM_SLAVES-1:0] m_ctrlport_req_addr,
output wire [32*NUM_SLAVES-1:0] m_ctrlport_req_data,
output wire [ 4*NUM_SLAVES-1:0] m_ctrlport_req_byte_en,
output wire [ NUM_SLAVES-1:0] m_ctrlport_req_has_time,
output wire [64*NUM_SLAVES-1:0] m_ctrlport_req_time,
input wire [ NUM_SLAVES-1:0] m_ctrlport_resp_ack,
input wire [ 2*NUM_SLAVES-1:0] m_ctrlport_resp_status,
input wire [32*NUM_SLAVES-1:0] m_ctrlport_resp_data
);
generate
if (NUM_SLAVES == 1) begin : gen_no_split
// No logic is needed if only one slave is going to be connected
assign m_ctrlport_req_wr = s_ctrlport_req_wr;
assign m_ctrlport_req_rd = s_ctrlport_req_rd;
assign m_ctrlport_req_addr = s_ctrlport_req_addr;
assign m_ctrlport_req_data = s_ctrlport_req_data;
assign m_ctrlport_req_byte_en = s_ctrlport_req_byte_en;
assign m_ctrlport_req_has_time = s_ctrlport_req_has_time;
assign m_ctrlport_req_time = s_ctrlport_req_time;
always @(*) begin
s_ctrlport_resp_ack = m_ctrlport_resp_ack;
s_ctrlport_resp_status = m_ctrlport_resp_status;
s_ctrlport_resp_data = m_ctrlport_resp_data;
end
end else begin : gen_splitter
//---------------------------------------------------------------------------
// Split the requests among the slaves
//---------------------------------------------------------------------------
genvar i;
for (i = 0; i < NUM_SLAVES; i = i+1) begin : gen_split
// No special logic is required to split the requests from the master among
// multiple slaves.
assign m_ctrlport_req_wr[i] = s_ctrlport_req_wr;
assign m_ctrlport_req_rd[i] = s_ctrlport_req_rd;
assign m_ctrlport_req_addr[20*i+:20] = s_ctrlport_req_addr;
assign m_ctrlport_req_data[32*i+:32] = s_ctrlport_req_data;
assign m_ctrlport_req_byte_en[4*i+:4] = s_ctrlport_req_byte_en;
assign m_ctrlport_req_has_time[i] = s_ctrlport_req_has_time;
assign m_ctrlport_req_time[64*i+:64] = s_ctrlport_req_time;
end
//---------------------------------------------------------------------------
// Decode the responses
//---------------------------------------------------------------------------
reg [31:0] data;
reg [ 1:0] status;
reg ack = 0;
// Take the responses and mask them with ack, then OR them together
always @(*) begin : comb_decode
integer s;
data = 0;
status = 0;
ack = 0;
for (s = 0; s < NUM_SLAVES; s = s+1) begin
data = data | (m_ctrlport_resp_data [s*32 +: 32] & {32{m_ctrlport_resp_ack[s]}});
status = status | (m_ctrlport_resp_status[s* 2 +: 2] & { 2{m_ctrlport_resp_ack[s]}});
ack = ack | m_ctrlport_resp_ack[s];
end
end
// Register the output to break combinatorial path
always @(posedge ctrlport_clk) begin : response_reg
if (ctrlport_rst) begin
s_ctrlport_resp_ack <= 0;
end else begin
s_ctrlport_resp_data <= data;
s_ctrlport_resp_status <= status;
s_ctrlport_resp_ack <= ack;
end
end
end
endgenerate
endmodule
|