| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 
 | //////////////////////////////////////////////////////////////////////////////////
// Copyright Ettus Research LLC
// Copyright 2014 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// The ZYNQ FIFO configuration arbiter:
//  - holds configuration memory addresses
//  - setting and readback for slave state machines
//  - stream of memory addresses for master state machines
//////////////////////////////////////////////////////////////////////////////////
module zf_arbiter
#(
    parameter STREAMS_WIDTH = 2,
    parameter CMDFIFO_DEPTH = 4,
    parameter PAGE_WIDTH = 16,
    parameter USE_INT_STREAM_SEL = 0    // Use internal round robin stream selection
)
(
    input clk,
    input rst,
    //------------------------------------------------------------------
    //-- settings interface
    //------------------------------------------------------------------
    input [31:0] set_addr,
    input [31:0] set_data,
    input set_stb,
    //------------------------------------------------------------------
    //-- readback interface
    //------------------------------------------------------------------
    input [31:0] rb_addr,
    output [31:0] rb_data,
    input rb_stb,
    //------------------------------------------------------------------
    //-- fifo interactive interface
    //------------------------------------------------------------------
    output [71:0] cmd_tdata,
    output cmd_tvalid,
    input cmd_tready,
    input [7:0] sts_tdata,
    input sts_tvalid,
    output sts_tready,
    //------------------------------------------------------------------
    //-- which stream to process? externally provided if USE_INT_STREAM_SEL = 0
    //------------------------------------------------------------------
    input [STREAMS_WIDTH-1:0] ext_stream_sel,
    input ext_stream_valid,
    output [31:0] debug
);
////////////////////////////////////////////////////////////////////////
///////////////////////////// Begin R T L //////////////////////////////
////////////////////////////////////////////////////////////////////////
    localparam NUM_STREAMS = (1 << STREAMS_WIDTH);
    reg [STREAMS_WIDTH-1:0] which_stream;
    //readback mux assignment
    reg [31:0] rb_data_i [NUM_STREAMS-1:0];
    assign rb_data = rb_data_i[rb_addr[STREAMS_WIDTH+4:5]];
    //cmd + sts fifo mux signals
    wire [72:0] cmd_data_i [NUM_STREAMS-1:0];
    assign cmd_tdata = cmd_data_i[which_stream];
    wire cmd_tvalid_i [NUM_STREAMS-1:0];
    wire sts_tready_i [NUM_STREAMS-1:0];
    ////////////////////////////////////////////////////////////////////
    // state machine for driving fifo arbitration
    ////////////////////////////////////////////////////////////////////
    localparam STATE_SET_WHICH_STREAM = 0;
    localparam STATE_ASSERT_DO_CMD = 1;
    localparam STATE_ASSERT_DO_STS = 2;
    localparam STATE_SOME_IDLE = 3;
    reg [1:0] state;
    wire [STREAMS_WIDTH-1:0] stream_sel;
    wire stream_valid;
    generate
    if (USE_INT_STREAM_SEL) begin
        reg [STREAMS_WIDTH-1:0] int_stream_sel;
        always @(posedge clk) begin
            if (rst) begin
                int_stream_sel <= 0;
            end else begin
                if (state == STATE_SET_WHICH_STREAM) begin
                    if (int_stream_sel < NUM_STREAMS-1) begin
                        int_stream_sel <= int_stream_sel + 1;
                    end else begin
                        int_stream_sel <= 0;
                    end
                end
            end
        end
        assign stream_sel = int_stream_sel;
        assign stream_valid = 1'b1;
    end else begin
        assign stream_sel = ext_stream_sel;
        assign stream_valid = ext_stream_valid;
    end
    endgenerate
    always @(posedge clk) begin
        if (rst) begin
            state <= STATE_SET_WHICH_STREAM;
            which_stream <= 0;
        end
        else case (state)
        STATE_SET_WHICH_STREAM: begin
            if (cmd_tvalid_i[stream_sel]) state <= STATE_ASSERT_DO_CMD;
            which_stream <= stream_sel;
        end
        STATE_ASSERT_DO_CMD: begin
            if (cmd_tvalid && cmd_tready) state <= STATE_ASSERT_DO_STS;
        end
        STATE_ASSERT_DO_STS: begin
            if (sts_tvalid && sts_tready) state <= STATE_SOME_IDLE;
        end
        STATE_SOME_IDLE: begin
            state <= STATE_SET_WHICH_STREAM;
        end
        default: state <= STATE_SET_WHICH_STREAM;
        endcase //state
    end
    ////////////////////////////////////////////////////////////////////
    // memory map + fifos for the host control/status
    ////////////////////////////////////////////////////////////////////
    wire do_cmd = (state == STATE_ASSERT_DO_CMD);
    wire do_sts = (state == STATE_ASSERT_DO_STS);
    assign cmd_tvalid = do_cmd && cmd_tvalid_i[which_stream];
    assign sts_tready = do_sts && sts_tready_i[which_stream];
    genvar i;
    generate
    for (i=0; i < NUM_STREAMS; i=i+1) begin : stream_circuit
        wire [PAGE_WIDTH-3:0] set_addr32 = set_addr[PAGE_WIDTH-1:2];
        wire write_clear = set_stb && (set_addr32 == (0 + i*8));
        wire write_addr  = set_stb && (set_addr32 == (1 + i*8));
        wire write_size  = set_stb && (set_addr32 == (2 + i*8));
        wire write_sts_rdy  = set_stb && (set_addr32 == (3 + i*8));
        wire write_sts      = set_stb && (set_addr32 == (4 + i*8));
        wire [PAGE_WIDTH-3:0] rb_addr32 = rb_addr[PAGE_WIDTH-1:2];
        wire read_sig            = (rb_addr32 == (0 + i*8));
        wire read_status         = (rb_addr32 == (4 + i*8));
        wire read_sts_occupied   = (rb_addr32 == (5 + i*8));
        wire read_cmd_addr_space = (rb_addr32 == (6 + i*8));
        wire read_cmd_size_space = (rb_addr32 == (7 + i*8));
        wire [15:0] sts_occupied, cmd_addr_space, cmd_size_space;
        wire [7:0] sts_readback;
        wire [15:0] this_stream = i;
        always @* begin
            if (read_sig) rb_data_i[i] <= {16'hACE0, this_stream};
            else if (read_status) rb_data_i[i] <= {24'b0, sts_readback};
            else if (read_sts_occupied) rb_data_i[i] <= {16'b0, sts_occupied};
            else if (read_cmd_addr_space) rb_data_i[i] <= {16'b0, cmd_addr_space};
            else if (read_cmd_size_space) rb_data_i[i] <= {16'b0, cmd_size_space};
            else rb_data_i[i] <= 32'h12345678;
        end
        wire [31:0] cmd_addr, cmd_size;
        wire cmd_addr_tvalid, cmd_size_tvalid;
        assign cmd_data_i[i][32+39:32+36] = 4'b0; //reserved - 0?
        assign cmd_data_i[i][32+35:64] = i[3:0]; //tag
        assign cmd_data_i[i][63:32] = cmd_addr;
        assign cmd_data_i[i][31] = 1'b0; //DRE ReAlignment Request
        assign cmd_data_i[i][30] = 1'b1; //always EOF for tlast stream
        assign cmd_data_i[i][29:24] = 6'b0; //DRE Stream Alignment
        assign cmd_data_i[i][23] = 1'b1; // Transfer type, 0 = No addr incr / FIFO mode, 1 = incr addr
        assign cmd_data_i[i][22:0] = cmd_size[22:0];
        axi_fifo #(.WIDTH(32), .SIZE(CMDFIFO_DEPTH)) crl_addr_fifo
        (
            .clk(clk), .reset(rst), .clear(write_clear),
            .i_tdata(set_data), .i_tvalid(write_addr), .i_tready(), .space(cmd_addr_space),
            .o_tdata(cmd_addr), .o_tvalid(cmd_addr_tvalid), .o_tready(cmd_tready && do_cmd && (which_stream == i)), .occupied()
        );
        axi_fifo #(.WIDTH(32), .SIZE(CMDFIFO_DEPTH)) crl_size_fifo
        (
            .clk(clk), .reset(rst), .clear(write_clear),
            .i_tdata(set_data), .i_tvalid(write_size), .i_tready(), .space(cmd_size_space),
            .o_tdata(cmd_size), .o_tvalid(cmd_size_tvalid), .o_tready(cmd_tready && do_cmd && (which_stream == i)), .occupied()
        );
        assign cmd_tvalid_i[i] = cmd_addr_tvalid && cmd_size_tvalid && stream_valid;
        wire dm_sts_tvalid = sts_tvalid && do_sts && (which_stream == i);
        axi_fifo #(.WIDTH(8), .SIZE(CMDFIFO_DEPTH)) sts_fifo
        (
            .clk(clk), .reset(rst), .clear(),
            .i_tdata((write_sts)?set_data[7:0]:sts_tdata), .i_tvalid(dm_sts_tvalid || write_sts), .i_tready(sts_tready_i[i]), .space(),
            .o_tdata(sts_readback), .o_tvalid(), .o_tready(write_sts_rdy), .occupied(sts_occupied)
        );
    end
    endgenerate
    assign debug[1:0] = state;
    assign debug[4] = cmd_tvalid;
    assign debug[5] = cmd_tready;
    assign debug[6] = sts_tvalid;
    assign debug[7] = sts_tready;
    assign debug[8] = stream_sel;
    assign debug[9] = which_stream;
    assign debug[15] = rb_addr[STREAMS_WIDTH+4:5];
endmodule //zf_arbiter
 |