1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
|
//
// Copyright 2020 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "lmx2572_regs.hpp"
#include <uhd/exception.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhdlib/usrp/common/lmx2572.hpp>
#include <uhdlib/utils/interpolation.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <cmath>
#include <limits>
#include <map>
namespace {
// LOG ID
constexpr char LOG_ID[] = "LMX2572";
// Highest LO / output frequency
constexpr double MAX_OUT_FREQ = 6.4e9; // Hz
// Lowest LO / output frequency
constexpr double MIN_OUT_FREQ = 12.5e6; // Hz
// Target loop bandwidth
constexpr double TARGET_LOOP_BANDWIDTH = 75e3; // Hz
// Loop Filter gain setting resistor
constexpr double LOOP_GAIN_SETTING_RESISTANCE = 150; // ohm
// Delay after powerup. TI recommends a 10 ms delay after clearing powerdown
// (not documented in the datasheet).
const uhd::time_spec_t POWERUP_DELAY = uhd::time_spec_t(10e-3);
// Conservative estimate for PLL to lock which includes VCO calibration and PLL settling
constexpr double PLL_LOCK_TIME = 200e-6; // s
// Valid input/reference frequencies (fOSC)
//
// NOTE: These frequencies are valid for X400/ZBX. If we need to use this
// driver elsewhere, this part needs to be refactored.
const std::set<double> VALID_FOSC{61.44e6, 64e6, 62.5e6, 50e6};
}; // namespace
//! Control interface for an LMX2572 synthesizer
class lmx2572_impl : public lmx2572_iface
{
public:
enum class muxout_state_t { LOCKDETECT, SDO };
explicit lmx2572_impl(
write_fn_t&& poke_fn, read_fn_t&& peek_fn, sleep_fn_t&& sleep_fn)
: _poke16(std::move(poke_fn))
, _peek16(std::move(peek_fn))
, _sleep(std::move(sleep_fn))
, _regs()
{
_regs.save_state();
}
void commit() override
{
UHD_LOG_TRACE(LOG_ID, "Storing register cache to LMX2572...");
const auto changed_addrs = _regs.get_changed_addrs<uint8_t>();
for (const auto addr : changed_addrs) {
// We write R0 last, for double-buffering
if (addr == 0) {
continue;
}
_poke16(addr, _regs.get_reg(addr));
}
_poke16(0, _regs.get_reg(0));
_regs.save_state();
UHD_LOG_TRACE(LOG_ID,
"Storing cache complete: Updated " << changed_addrs.size() << " registers.");
}
bool get_enabled() override
{
// Chip is either in normal operation mode or power down mode
return _regs.powerdown == lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION;
}
void set_enabled(const bool enabled) override
{
const bool prev_enabled = get_enabled();
_regs.powerdown = enabled
? lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION
: lmx2572_regs_t::powerdown_t::POWERDOWN_POWER_DOWN;
_poke16(0, _regs.get_reg(0));
if (enabled && !prev_enabled) {
_sleep(POWERUP_DELAY);
}
}
void reset() override
{
// Power-on Programming Sequence described in the datasheet,
// Section 7.5.1.1
_regs = lmx2572_regs_t{};
_regs.reset = lmx2572_regs_t::reset_t::RESET_RESET;
_poke16(0, _regs.get_reg(0));
// Reset bit is self-clearing, it does not need to be poked twice. We
// manually reset it in the SW cache so we don't accidentally reset again
_regs.reset = lmx2572_regs_t::reset_t::RESET_NORMAL_OPERATION;
// Also enable register readback so we can read back the magic number
// register
_enable_register_readback(true);
// If the LO was previously powered down, the reset above will power it up. On
// power-up, we need to wait for the power up delay recommended by TI.
_sleep(POWERUP_DELAY);
// Check we can read back the last register, which always returns a
// magic constant:
const auto magic125 = _peek16(125);
if (magic125 != 0x2288) {
UHD_LOG_ERROR(LOG_ID,
"Unable to communicate with LMX2572! Expected R125==0x2288, got: "
<< std::hex << magic125 << std::dec);
throw uhd::runtime_error("Unable to communicate to LMX2572!");
}
UHD_LOG_TRACE(LOG_ID, "Communication with LMX2572 successful.");
// Now set _regs into a sensible state
_set_defaults();
// Now write the regs in reverse order, skipping RO regs
const auto ro_regs = _regs.get_ro_regs();
// Write R0 last for the double buffering
for (int addr = _regs.get_num_regs() - 2; addr >= 0; addr--) {
if (ro_regs.count(addr)) {
continue;
}
_poke16(uhd::narrow_cast<uint8_t>(addr), _regs.get_reg(addr));
}
_regs.save_state();
}
bool get_lock_status() override
{
// Disable register readback which implicitly enables lock detect mode
_enable_register_readback(false);
// If the PLL is locked we expect to read 0xFFFF from any read
return _peek16(0) == 0xFFFF;
}
uint16_t peek16(const uint8_t addr)
{
_enable_register_readback(true);
return _peek16(addr);
}
void set_sync_mode(const bool enable) override
{
_sync_mode = enable;
}
//! Returns the enabled/disabled state of the phase synchronization
bool get_sync_mode() override
{
return _sync_mode;
}
void set_output_enable_all(const bool enable) override
{
set_output_enable(RF_OUTPUT_A, enable);
set_output_enable(RF_OUTPUT_B, enable);
}
void set_output_enable(const output_t output, const bool enable) override
{
if (output == RF_OUTPUT_A) {
_regs.outa_pd = enable ? lmx2572_regs_t::outa_pd_t::OUTA_PD_NORMAL_OPERATION
: lmx2572_regs_t::outa_pd_t::OUTA_PD_POWER_DOWN;
return;
}
if (output == RF_OUTPUT_B) {
_regs.outb_pd = enable ? lmx2572_regs_t::outb_pd_t::OUTB_PD_NORMAL_OPERATION
: lmx2572_regs_t::outb_pd_t::OUTB_PD_POWER_DOWN;
return;
}
UHD_THROW_INVALID_CODE_PATH();
}
void set_output_power(const output_t output, const uint8_t power) override
{
if (output == RF_OUTPUT_A) {
_regs.outa_pwr = power;
return;
}
if (output == RF_OUTPUT_B) {
_regs.outb_pwr = power;
return;
}
UHD_THROW_INVALID_CODE_PATH();
}
void set_mux_input(const output_t output, const mux_in_t input) override
{
switch (output) {
case RF_OUTPUT_A: {
switch (input) {
case mux_in_t::DIVIDER:
_regs.outa_mux =
lmx2572_regs_t::outa_mux_t::OUTA_MUX_CHANNEL_DIVIDER;
return;
case mux_in_t::VCO:
_regs.outa_mux = lmx2572_regs_t::outa_mux_t::OUTA_MUX_VCO;
return;
case mux_in_t::HIGH_IMPEDANCE:
_regs.outa_mux =
lmx2572_regs_t::outa_mux_t::OUTA_MUX_HIGH_IMPEDANCE;
return;
default:
break;
}
break;
}
case RF_OUTPUT_B: {
switch (input) {
case mux_in_t::DIVIDER:
_regs.outb_mux =
lmx2572_regs_t::outb_mux_t::OUTB_MUX_CHANNEL_DIVIDER;
return;
case mux_in_t::VCO:
_regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_VCO;
return;
case mux_in_t::HIGH_IMPEDANCE:
_regs.outb_mux =
lmx2572_regs_t::outb_mux_t::OUTB_MUX_HIGH_IMPEDANCE;
return;
case mux_in_t::SYSREF:
_regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_SYSREF;
return;
default:
break;
}
break;
}
default:
break;
}
UHD_THROW_INVALID_CODE_PATH();
}
double set_frequency(
const double target_freq, const double fOSC, const bool spur_dodging) override
{
// Sanity check
if (target_freq > MAX_OUT_FREQ || target_freq < MIN_OUT_FREQ) {
UHD_LOG_ERROR(LOG_ID,
"Invalid LMX2572 target frequency! Must be in ["
<< (MIN_OUT_FREQ / 1e6) << " MHz, " << (MAX_OUT_FREQ / 1e6)
<< " MHz]!");
throw uhd::value_error("Invalid LMX2572 target frequency!");
}
UHD_ASSERT_THROW(VALID_FOSC.count(fOSC));
// Create an integer version of fOSC for some of the following
// calculations
const uint64_t fOSC_int = static_cast<uint64_t>(fOSC);
// 1. Set up output/channel divider value and the output mux
const uint16_t out_D = _set_output_divider(target_freq);
const double fVCO = target_freq * out_D;
UHD_ASSERT_THROW(3200e6 <= fVCO && fVCO <= 6400e6);
// 2. Configure the reference dividers/multipliers
_set_pll_div_and_mult(target_freq, fVCO, fOSC_int);
// Calculate phase detector frequency
// See datasheet (Section 7.3.2):
// Equation (1): fPD = fOSC × OSC_2X × MULT / (PLL_R_PRE × PLL_R)
const double fPD =
fOSC * (_regs.osc_2x + 1) * _regs.mult / (_regs.pll_r_pre * _regs.pll_r);
// pre-3. Identify SYNC category.
// Based on the category, we need to set VCO_PHASE_SYNC_EN appropriately
// and update our p-multiplier.
// Note: In the line below, we use target_freq and not actual_freq. That
// is OK, because we know that _get_sync_cat() only does a check to see
// if target_freq is an integer multiple of fOSC. If that's the case,
// then rounding/coercion errors won't happen between target_freq and
// actual_freq because we can always exactly produce frequencies that
// are integer multiples of fOSC. This way, we don't have a circular
// dependency (because actual_freq depends on p indirectly).
const int p =
_set_phase_sync(_get_sync_cat(_regs.mult, fOSC, target_freq, out_D));
// P is introduced in Section 7.3.12 - calculate P with adaptation of
// Equation (3). It also comes up again in 8.1.6, although it's not
// called P there any more. There, it is the factor between N' and N.
// P == 2 whenever we're in a sync category where we need to program the
// N-divider with half the "normal" values. In TICS PRO, this value is
// described as "Calculated Included Channel Divide".
// 3. Calculate N, PLL_NUM and PLL_DEN
const double delta_fVCO = spur_dodging ? 2e6 : 1.0;
// In the next statement, we:
// - Estimate PLL_DEN by PLL_DEN = ceil(fPD * p / delta_fVCO)
// - This value can exceed the limits of uint32_t, so we clamp it between
// 1 and 0xFFFFFFFF (the denominator can also not be zero, so we need
// to catch rounding errors)
// - Finally, convert to uint32_t
const uint32_t PLL_DEN = static_cast<uint32_t>(std::max(1.0,
std::min(std::ceil(fPD * p / delta_fVCO),
double(std::numeric_limits<uint32_t>::max()))));
UHD_ASSERT_THROW(PLL_DEN > 0);
// This is where we do the N=N'/2 division from Section 8.1.6:
const double N_real = fVCO / (fPD * p);
const uint32_t N = static_cast<uint32_t>(std::floor(N_real));
const uint32_t PLL_NUM = std::round((N_real - double(N)) * PLL_DEN);
// See datasheet (Section 7.3.4):
// Equation (2): fVCO = fPD * [PLL_N + (PLL_NUM / PLL_DEN)] * p
// Note that p here is the "extra divider in SYNC mode" that is in the
// text, but not listed in Eq. (2) in this section.
const double fVCO_actual =
fPD * p * (N + (static_cast<double>(PLL_NUM) / PLL_DEN));
UHD_ASSERT_THROW(3200e6 <= fVCO_actual && fVCO_actual <= 6400e6);
const double actual_freq = fVCO_actual / out_D;
// clang-format off
UHD_LOG_TRACE(LOG_ID,
"Calculating settings for fTARGET=" << (target_freq / 1e6)
<< " MHz, fOSC=" << (fOSC / 1e6)
<< " MHz: Target fVCO=" << (fVCO / 1e6)
<< " MHz, actual fVCO=" << (fVCO_actual / 1e6)
<< " MHz. R_pre=" << _regs.pll_r_pre
<< " OSC2X=" << _regs.osc_2x
<< " MULT=" << std::to_string(_regs.mult)
<< " PLL_R=" << std::to_string(_regs.pll_r)
<< " P=" << p
<< " N=" << N
<< " PLL_DEN=" << PLL_DEN
<< " PLL_NUM=" << PLL_NUM
<< " CHDIV=" << out_D);
// clang-format on
// 4. Set frequency dependent registers
_compute_and_set_mult_hi(fOSC);
_set_pll_n(N); // Note: N-divider values already account for
_set_pll_num(PLL_NUM); // N-divider adaptations at this point. No more
_set_pll_den(PLL_DEN); // divide-by-2 necessary.
_set_fcal_hpfd_adj(fPD);
_set_fcal_lpfd_adj(fPD);
_set_pfd_dly(fVCO_actual);
_set_mash_seed(spur_dodging, PLL_NUM, fPD);
if (get_sync_mode()) {
// From R69 register field description (Table 77):
// The delay should be at least 4 times the PLL lock time. The
// delay is expressed in state machine clock periods where
// state_machine_clock_period = 2^(CAL_CLK_DIV) / fOSC and
// CAL_CLK_DIV is one of {0, 1}
const double period = ((_regs.cal_clk_div == 0) ? 1 : 2) / fOSC;
const uint32_t mash_rst_count =
static_cast<uint32_t>(std::ceil(4 * PLL_LOCK_TIME / period));
_set_mash_rst_count(mash_rst_count);
}
// 5. Calculate charge pump gain
_compute_and_set_charge_pump_gain(fVCO_actual, N_real);
// 6. Calculate VCO calibration values
_compute_and_set_vco_cal(fVCO_actual);
// 7. Set amplitude on enabled outputs
if (_get_output_enabled(RF_OUTPUT_A)) {
_find_and_set_lo_power(actual_freq, RF_OUTPUT_A);
}
if (_get_output_enabled(RF_OUTPUT_B)) {
_find_and_set_lo_power(actual_freq, RF_OUTPUT_B);
}
return actual_freq;
}
private:
/**************************************************************************
* Attributes
*************************************************************************/
write_fn_t _poke16;
read_fn_t _peek16;
sleep_fn_t _sleep;
lmx2572_regs_t _regs = lmx2572_regs_t();
bool _sync_mode = false;
/**************************************************************************
* Private Methods
*************************************************************************/
//! Identify sync category according to Section 8.1.6 of the datasheet. This
// function implements the flowchart (Fig. 170).
sync_cat _get_sync_cat(
const uint8_t M, const double fOSC, const double fOUT, const uint16_t CHDIV)
{
if (!get_sync_mode()) {
return NONE;
}
// Right-hand path of the flowchart:
if (M > 1) {
if (CHDIV > 2) {
return CAT4;
}
if (std::fmod(fOUT, fOSC * M) != 0) {
return CAT4;
}
// In the flow chart, there's a third condition (PLL_NUM == 0) but
// that is implied in the previous condition. Here's the proof:
// 1) Because of the previous condition, we know that
// f_OUT = f_OSC * M * K, where K is an integer.
// We also know that that the doubler is disabled, so we can
// ignore it here.
// 2) PLL_NUM must be zero when f_VCO / f_PD is an integer value:
//
// f_VCO
// N = -----
// f_PD
//
// 3) We can insert
// f_VCO = f_OUT * D
// and
// f_PD = f_OSC * M / R where R is an integer (R-divider)
// which yields:
//
// f_OUT * D * R
// N = -------------
// f_OSC * M
//
// 4) Now we can insert 1), which yields
//
// N = K * D * R
//
// D is either 1 or 2, and K and R are integers. Therefore, N
// is an integer too, and PLL_NUM == 0. _
// |_|
//
// Note: We could simply calculate N here, but that would require
// knowing K and R, which we can avoid with this simple comment.
}
// Left-hand path of the flowchart:
if (M == 1 && std::fmod(fOUT, fOSC) != 0) {
return CAT3;
}
if (M == 1 && CHDIV > 2) {
return CAT2;
}
if (CHDIV == 2) {
return CAT1B;
}
return CAT1A;
}
//! Enable/disable register readback mode enabled
// SPI MISO is multiplexed to lock detect and register readback. Reading
// any register when the mux is set to lock detect will return just the
// lock detect signal, so ensure we're in readback mode if reads desired
void _enable_register_readback(const bool enable)
{
auto desired_state =
enable ? lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_REGISTER_READBACK
: lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_LOCK_DETECT;
if (_regs.muxout_ld_sel != desired_state) {
_regs.muxout_ld_sel = desired_state;
_poke16(0, _regs.get_reg(0));
}
}
//! Sets the output divider registers
//
// Configures both the output divider and the output mux. If the divider is
// used, the mux input is set to CHDIV, otherwise, it's set to VCO.
uint16_t _set_output_divider(const double freq)
{
// clang-format off
// Map the desired output / LO frequency to output divider settings
const std::map<
double,
std::tuple<uint16_t, lmx2572_regs_t::chdiv_t>
> out_div_map {
// freq outD chdiv
{25e6, {256, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_256}},
{50e6, {128, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_128}},
{100e6, {64, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_64 }},
{200e6, {32, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_32 }},
{400e6, {16, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_16 }},
{800e6, {8, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_8 }},
{1.6e9, {4, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_4 }},
{3.2e9, {2, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2 }},
// CHDIV isn't used for out_divider == 1 so use DIVIDE_BY_2
// We use +1 as an epsilon value here. Upon entering this function
// we already know that that freq <= 6.4e9. We increase the
// boundary here so that upper_bound() will not fail on the
// corner case freq == 6.4e9.
{6.4e9+1, {1, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2 }}
};
// clang-format on
uint16_t out_D;
lmx2572_regs_t::chdiv_t chdiv;
auto out_div_it = out_div_map.upper_bound(freq);
UHD_ASSERT_THROW(out_div_it != out_div_map.end());
std::tie(out_D, chdiv) = out_div_it->second;
_regs.chdiv = lmx2572_regs_t::chdiv_t(chdiv);
// If we're using the output divider, map it to the corresponding output
// mux. Otherwise, connect the VCO directly to the mux.
const mux_in_t input = (out_D > 1) ? mux_in_t::DIVIDER : mux_in_t::VCO;
if (_get_output_enabled(RF_OUTPUT_A)) {
set_mux_input(RF_OUTPUT_A, input);
}
if (_get_output_enabled(RF_OUTPUT_B)) {
set_mux_input(RF_OUTPUT_B, input);
}
return out_D;
}
//! Returns the output enabled status of output
bool _get_output_enabled(const output_t output)
{
if (output == RF_OUTPUT_A) {
return _regs.outa_pd == lmx2572_regs_t::outa_pd_t::OUTA_PD_NORMAL_OPERATION;
} else {
return _regs.outb_pd == lmx2572_regs_t::outb_pd_t::OUTB_PD_NORMAL_OPERATION;
}
}
//! Sets the MASH_RST_COUNT registers
void _set_mash_rst_count(const uint32_t mash_rst_count)
{
_regs.mash_rst_count_upper = uhd::narrow_cast<uint16_t>(mash_rst_count >> 16);
_regs.mash_rst_count_lower = uhd::narrow_cast<uint16_t>(mash_rst_count);
}
//! Calculate and set the mult_hi register
//
// Sets the MULT_HI bit (needs to be high if the multiplier output frequency
// is larger than 100 MHz).
//
// \param ref_frequency The OSCin signal's frequency.
void _compute_and_set_mult_hi(const double fOSC)
{
const double fMULTout =
(fOSC * (int(_regs.osc_2x) + 1) * _regs.mult) / _regs.pll_r_pre;
_regs.mult_hi = (_regs.mult > 1 && fMULTout > 100e6)
? lmx2572_regs_t::mult_hi_t::MULT_HI_GREATER_THAN_100M
: lmx2572_regs_t::mult_hi_t::MULT_HI_LESS_THAN_EQUAL_TO_100M;
}
//! Sets the mash seed value based on fPD and whether spur dodging is enabled
void _set_mash_seed(const bool spur_dodging, const uint32_t PLL_NUM, const double pfd)
{
uint32_t mash_seed = 0;
if (spur_dodging || PLL_NUM == 0) {
// Leave mash_seed set to 0
} else {
const std::map<double, uint32_t> seed_map = {{25e6, 4999},
{30.72e6, 5531},
{31.25e6, 5591},
{32e6, 5657},
{50e6, 7096},
{61.44e6, 7841},
{62.5e6, 7907},
{64e6, 7993}};
mash_seed = seed_map.lower_bound(pfd)->second;
}
_regs.mash_seed_upper = uhd::narrow_cast<uint16_t>(mash_seed >> 16);
_regs.mash_seed_lower = uhd::narrow_cast<uint16_t>(mash_seed);
}
void _find_and_set_lo_power(const double freq, const output_t output)
{
if (freq < 3e9) {
set_output_power(output, 25);
} else if (3e9 <= freq && freq < 4e9) {
constexpr double slope = 5.0;
constexpr double segment_range = 1e9;
constexpr int power_base = 25;
const double offset = freq - 3e9;
const uint8_t power =
std::round<uint8_t>(power_base + ((offset / segment_range) * slope));
set_output_power(output, power);
} else if (4e9 <= freq && freq < 5e9) {
constexpr double slope = 10.0;
constexpr double segment_range = 1e9;
constexpr int power_base = 30;
const double offset = freq - 4e9;
const uint8_t power =
std::round<uint8_t>(power_base + ((offset / segment_range) * slope));
set_output_power(output, power);
} else if (5e9 <= freq && freq < 6.4e9) {
constexpr double slope = 5 / 1.4;
constexpr double segment_range = 1.4e9;
constexpr int power_base = 40;
const double offset = freq - 5e9;
const uint8_t power =
std::round<uint8_t>(power_base + ((offset / segment_range) * slope));
set_output_power(output, power);
} else if (freq >= 6.4e9) {
set_output_power(output, 45);
} else {
UHD_THROW_INVALID_CODE_PATH();
}
}
//! Sets the FCAL_HPFD_ADJ value based on fPD
void _set_fcal_hpfd_adj(const double pfd)
{
// These frequency constants are from the data sheet (Section 7.6.1)
if (pfd <= 37.5e6) {
_regs.fcal_hpfd_adj = 0x0;
} else if (37.5e6 < pfd && pfd <= 75e6) {
_regs.fcal_hpfd_adj = 0x1;
} else if (75e6 < pfd && pfd <= 100e6) {
_regs.fcal_hpfd_adj = 0x2;
} else { // 100 MHz > pfd
_regs.fcal_hpfd_adj = 0x3;
}
}
//! Sets the FCAL_LPFD_ADJ value based on the fPD (Section 7.6.1)
void _set_fcal_lpfd_adj(const double pfd)
{
// These frequency constants are from the data sheet (Section 7.6.1)
if (pfd >= 10e6) {
_regs.fcal_lpfd_adj = 0x0;
} else if (10e6 > pfd && pfd >= 5e6) {
_regs.fcal_lpfd_adj = 0x1;
} else if (5e6 > pfd && pfd >= 2.5e6) {
_regs.fcal_lpfd_adj = 0x2;
} else { // pfd > 2.5MHz
_regs.fcal_lpfd_adj = 0x3;
}
}
//! Sets the PFD Delay value based on fVCO (Section 7.3.4)
void _set_pfd_dly(const double fVCO)
{
UHD_ASSERT_THROW(_regs.mash_order == lmx2572_regs_t::MASH_ORDER_THIRD_ORDER);
// Thse constants / values come from the data sheet (Table 3)
if (3.2e9 <= fVCO && fVCO < 4e9) {
_regs.pfd_dly_sel = 2;
} else if (4e9 <= fVCO && fVCO < 4.9e9) {
_regs.pfd_dly_sel = 2;
} else if (4.9e9 <= fVCO && fVCO <= 6.4e9) {
_regs.pfd_dly_sel = 3;
} else {
UHD_THROW_INVALID_CODE_PATH();
}
}
//! Sets the PLL divider and multiplier values
void _set_pll_div_and_mult(
const double fTARGET, const double fVCO, const uint64_t fOSC_int)
{
// We want to avoid SYNC category 4 (device unreliable in SYNC mode) so
// fix the pre-divider and multiplier to 1
// See datasheet (Section 8.1.6)
_regs.pll_r_pre = 1;
_regs.mult = 1;
// Doubler fixed to disabled
_regs.osc_2x = lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED;
// Post-divider
uint8_t pll_r = 0;
// NOTE: This calculation is designed for the ZBX daughterboard. Should
// we want to reuse this driver elsewhere, we need to factor this out
// and make it a bit nicer.
if (get_sync_mode()) {
if (fTARGET < 3200e6) {
switch (fOSC_int) {
case 61440000: {
if (3200e6 <= fVCO && fVCO < 3950e6) {
pll_r = 2;
} else if (3950e6 <= fVCO && fVCO <= 6400e6) {
pll_r = 1;
}
break;
}
case 64000000: {
if (3200e6 <= fVCO && fVCO < 4100e6) {
pll_r = 2;
} else if (4150e6 < fVCO && fVCO <= 6400e6) {
pll_r = 1;
}
break;
}
case 62500000: {
if (3200e6 <= fVCO && fVCO < 4000e6) {
pll_r = 2;
} else if (4050e6 <= fVCO && fVCO <= 6400e6) {
pll_r = 1;
}
break;
}
case 50000000: {
pll_r = 1;
break;
}
default:
UHD_THROW_INVALID_CODE_PATH();
} // end switch
} // end if (fTARGET < 3200e6)
else {
pll_r = 1;
}
} else {
pll_r = 1;
}
UHD_ASSERT_THROW(pll_r > 0);
_regs.pll_r = pll_r;
// Section 7.3.2 states to not use both the double and the multiplier
// (M), so let's check we're doing that
UHD_ASSERT_THROW(
_regs.mult == 1 || _regs.osc_2x == lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED);
}
//! Set the value of VCO_PHASE_SYNC_EN according to our sync category
//
// Assumption: outa_mux and outb_mux have already been appropriately
// programmed for this use case.
//
// Also calculates the P-value (see set_frequency() for more discussion on
// that value).
int _set_phase_sync(const sync_cat cat)
{
int P = 1;
// We always set the default value for VCO_PHASE_SYNC_EN here. Some
// sync categories do not, in fact, require this bit to be asserted.
// By resetting it here, we can exactly follow the datasheet in the
// following switch statement.
_regs.vco_phase_sync_en =
lmx2572_regs_t::vco_phase_sync_en_t::VCO_PHASE_SYNC_EN_NORMAL_OPERATION;
// This switch statement implements Table 137 from Section 8.1.6 of the
// datasheet.
switch (cat) {
case CAT1A:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 1A");
// Nothing required in this mode, input and output are always
// at a deterministic phase relationship.
break;
case CAT1B:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 1B");
// Set VCO_PHASE_SYNC_EN = 1
_regs.vco_phase_sync_en = lmx2572_regs_t::vco_phase_sync_en_t::
VCO_PHASE_SYNC_EN_PHASE_SYNC_MODE;
P = 2;
break;
case CAT2:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 2");
// Note: We assume the existence and usage of the SYNC pin here.
// This means there are no more steps required (Steps 3-6 are
// skipped).
break;
case CAT3:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 3");
// In this category, we assume that the SYNC signal will be
// applied afterwards, and that timing requirements are met.
if (_regs.outa_mux == lmx2572_regs_t::outa_mux_t::OUTA_MUX_CHANNEL_DIVIDER
|| _regs.outb_mux
== lmx2572_regs_t::outb_mux_t::OUTB_MUX_CHANNEL_DIVIDER) {
P = 2;
}
_regs.vco_phase_sync_en = lmx2572_regs_t::vco_phase_sync_en_t::
VCO_PHASE_SYNC_EN_PHASE_SYNC_MODE;
break;
case CAT4:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 4");
UHD_LOG_WARNING(LOG_ID,
"PLL programming does not allow reliable phase synchronization!");
break;
case NONE:
// No phase sync, we're done
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
return P;
}
//! Compute and set charge pump gain register
// TODO: Charge pump settings will eventually come from a
// lookup table in the Cal EEPROM for Charge Pump setting vs. F_CORE VCO_.
void _compute_and_set_charge_pump_gain(const double fVCO_actual, const double N_real)
{
// clang-format off
// Table 135 (VCO Gain)
const std::map<
double,
std::tuple<double, double, uint8_t, uint8_t, uint8_t>
> vco_gain_map {
// fmax fmin fmax vco kmin kmax
{3.65e9, {3.2e9, 3.65e9, 1, 32, 47}},
{4.2e9, {3.65e9, 4.2e9, 2, 35, 54}},
{4.65e9, {4.2e9, 4.65e9, 3, 47, 64}},
{5.2e9, {4.65e9, 5.2e9, 4, 50, 73}},
{5.75e9, {5.2e9, 5.75e9, 5, 61, 82}},
{6.4e9, {5.75e9, 6.4e9, 6, 57, 79}}
};
// clang-format on
double fmin, fmax;
int VCO_CORE;
int KvcoMin, KvcoMax;
auto vco_gain_it = vco_gain_map.lower_bound(fVCO_actual);
UHD_ASSERT_THROW(vco_gain_it != vco_gain_map.end());
std::tie(fmin, fmax, VCO_CORE, KvcoMin, KvcoMax) = vco_gain_it->second;
double Kvco =
uhd::math::linear_interp<double>(fVCO_actual, fmin, KvcoMin, fmax, KvcoMax);
// Calculate the optimal charge pump current (uA)
const double icp = 2 * uhd::math::PI * TARGET_LOOP_BANDWIDTH * N_real
/ (Kvco * LOOP_GAIN_SETTING_RESISTANCE);
// clang-format off
// Table 2 (Charge Pump Gain)
const std::map<double, uint8_t> cpg_map = {
// gain cpg
{ 0, 0},
{ 625, 1},
{1250, 2},
{1875, 3},
{2500, 4},
{3125, 5},
{3750, 6},
{4375, 7},
{5000, 12},
{5625, 13},
{6250, 14},
{6875, 15}
};
// clang-format on
const uint8_t cpg = uhd::math::at_nearest(cpg_map, icp);
_regs.cpg = cpg;
}
//! Compute and set VCO calibration values
// This method implements VCO partial assist calibration
// See datasheet (Section 8.1.4.1)
void _compute_and_set_vco_cal(const double fVCO_actual)
{
// clang-format off
// Table 136
const std::map<
double,
std::tuple<double, double, uint8_t, uint8_t, uint8_t, uint16_t, uint16_t>
> vco_partial_assist_map{
// fmax fmin fmax vco Cmin Cmax Amin Amax
{3.65e9, {3.2e9, 3.65e9, 1, 131, 19, 138, 137}},
{4.2e9, {3.65e9, 4.2e9, 2, 143, 25, 162, 142}},
{4.65e9, {4.2e9, 4.65e9, 3, 135, 34, 126, 114}},
{5.2e9, {4.65e9, 5.2e9, 4, 136, 25, 195, 172}},
{5.75e9, {5.2e9, 5.75e9, 5, 133, 20, 190, 163}},
{6.4e9, {5.75e9, 6.4e9, 6, 151, 27, 256, 204}}
};
// clang-format on
double fmin, fmax;
uint8_t VCO_CORE, Cmin, Cmax;
uint16_t Amin, Amax;
auto vco_cal_it = vco_partial_assist_map.lower_bound(fVCO_actual);
UHD_ASSERT_THROW(vco_cal_it != vco_partial_assist_map.end());
std::tie(fmin, fmax, VCO_CORE, Cmin, Cmax, Amin, Amax) = vco_cal_it->second;
uint16_t VCO_CAPCTRL_STRT =
std::round(Cmin - (fVCO_actual - fmin) * (Cmin - Cmax) / (fmax - fmin));
// From R78 register field description (Table 86)
const uint16_t VCO_CAPCTRL_STRT_MAX = 183;
VCO_CAPCTRL_STRT = std::min(VCO_CAPCTRL_STRT_MAX, VCO_CAPCTRL_STRT);
uint16_t VCO_DACISET_STRT =
std::round(Amin - ((fVCO_actual - fmin) * (Amin - Amax) / (fmax - fmin)));
// From R17 register field description (Table 25), 9-bit register
const uint16_t VCO_DACISET_STRT_MAX = 511; // 0x1FF
VCO_DACISET_STRT = std::min(VCO_DACISET_STRT, VCO_DACISET_STRT_MAX);
_regs.vco_sel = VCO_CORE;
_regs.vco_capctrl_strt = VCO_CAPCTRL_STRT;
_regs.vco_daciset_strt = VCO_DACISET_STRT;
}
void _set_pll_n(const uint32_t n)
{
UHD_ASSERT_THROW((n & 0x7FFFF) == n);
// The regs object masks internally, this 0x7 is just for the sake of
// reading
_regs.pll_n_upper_3_bits = uhd::narrow_cast<uint16_t>((n >> 16) & 0x7);
_regs.pll_n_lower_16_bits = uhd::narrow_cast<uint16_t>(n);
}
void _set_pll_num(const uint32_t num)
{
_regs.pll_num_upper = uhd::narrow_cast<uint16_t>(num >> 16);
_regs.pll_num_lower = uhd::narrow_cast<uint16_t>(num);
}
void _set_pll_den(const uint32_t den)
{
_regs.pll_den_upper = uhd::narrow_cast<uint16_t>(den >> 16);
_regs.pll_den_lower = uhd::narrow_cast<uint16_t>(den);
}
// NOTE: Some of these defaults are just sensible defaults, and get
// overwritten as soon as anything interesting happens. Other defaults are
// specific to X400/ZBX. If we want to use this driver for other dboards,
// we should add APIs to set those other things in order not to have a
// leaky abstraction (we'd like to contain lmx2572_regs_t within this file).
void _set_defaults()
{
_regs.ramp_en = lmx2572_regs_t::ramp_en_t::RAMP_EN_NORMAL_OPERATION;
_regs.vco_phase_sync_en =
lmx2572_regs_t::vco_phase_sync_en_t::VCO_PHASE_SYNC_EN_NORMAL_OPERATION;
_regs.add_hold = 0;
_regs.out_mute = lmx2572_regs_t::out_mute_t::OUT_MUTE_MUTED;
_regs.fcal_hpfd_adj = 1;
_regs.fcal_lpfd_adj = 0;
_regs.fcal_en = lmx2572_regs_t::fcal_en_t::FCAL_EN_ENABLE;
_regs.muxout_ld_sel = lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_LOCK_DETECT;
_regs.reset = lmx2572_regs_t::reset_t::RESET_NORMAL_OPERATION;
_regs.powerdown = lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION;
_regs.cal_clk_div = 0;
_regs.ipbuf_type = lmx2572_regs_t::ipbuf_type_t::IPBUF_TYPE_DIFFERENTIAL;
_regs.ipbuf_term = lmx2572_regs_t::ipbuf_term_t::IPBUF_TERM_INTERNALLY_TERMINATED;
_regs.out_force = lmx2572_regs_t::out_force_t::OUT_FORCE_USE_OUT_MUTE;
// set_frequency() implements VCO Partial assist so set the correct modes of
// operation and some defaults (defaults will get overwritten)
// See datasheet (Section 8.1.4)
_regs.vco_daciset_force =
lmx2572_regs_t::vco_daciset_force_t::VCO_DACISET_FORCE_NORMAL_OPERATION;
_regs.vco_capctrl_force =
lmx2572_regs_t::vco_capctrl_force_t::VCO_CAPCTRL_FORCE_NORMAL_OPERATION;
_regs.vco_sel_force = lmx2572_regs_t::vco_sel_force_t::VCO_SEL_FORCE_DISABLED;
_regs.vco_daciset_strt = 0x096;
_regs.vco_sel = 0x6;
_regs.vco_capctrl_strt = 0;
_regs.mult_hi = lmx2572_regs_t::mult_hi_t::MULT_HI_LESS_THAN_EQUAL_TO_100M;
_regs.osc_2x = lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED;
_regs.mult = 1;
_regs.pll_r = 1;
_regs.pll_r_pre = 1;
_regs.cpg = 7;
_regs.pll_n_upper_3_bits = 0;
_regs.pll_n_lower_16_bits = 0x28;
_regs.mash_seed_en = lmx2572_regs_t::mash_seed_en_t::MASH_SEED_EN_ENABLED;
_regs.pfd_dly_sel = 0x2;
_regs.pll_den_upper = 0;
_regs.pll_den_lower = 0;
_regs.mash_seed_upper = 0;
_regs.mash_seed_lower = 0;
_regs.pll_num_upper = 0;
_regs.pll_num_lower = 0;
_regs.outa_pwr = 0;
_regs.outb_pd = lmx2572_regs_t::outb_pd_t::OUTB_PD_POWER_DOWN;
_regs.outa_pd = lmx2572_regs_t::outa_pd_t::OUTA_PD_POWER_DOWN;
_regs.mash_reset_n =
lmx2572_regs_t::mash_reset_n_t::MASH_RESET_N_NORMAL_OPERATION;
_regs.mash_order = lmx2572_regs_t::mash_order_t::MASH_ORDER_THIRD_ORDER;
_regs.outa_mux = lmx2572_regs_t::outa_mux_t::OUTA_MUX_VCO;
_regs.outb_pwr = 0;
_regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_VCO;
_regs.inpin_ignore = 0;
_regs.inpin_hyst = lmx2572_regs_t::inpin_hyst_t::INPIN_HYST_DISABLED;
_regs.inpin_lvl = lmx2572_regs_t::inpin_lvl_t::INPIN_LVL_INVALID;
_regs.inpin_fmt =
lmx2572_regs_t::inpin_fmt_t::INPIN_FMT_SYNC_EQUALS_SYSREFREQ_EQUALS_CMOS2;
_regs.ld_type = lmx2572_regs_t::ld_type_t::LD_TYPE_VTUNE_AND_VCOCAL;
_regs.ld_dly = 100;
// See Table 144 (LDO_DLY Setting)
_regs.ldo_dly = 3;
_regs.dblbuf_en_0 = lmx2572_regs_t::dblbuf_en_0_t::DBLBUF_EN_0_ENABLED;
_regs.dblbuf_en_1 = lmx2572_regs_t::dblbuf_en_1_t::DBLBUF_EN_1_ENABLED;
_regs.dblbuf_en_2 = lmx2572_regs_t::dblbuf_en_2_t::DBLBUF_EN_2_ENABLED;
_regs.dblbuf_en_3 = lmx2572_regs_t::dblbuf_en_3_t::DBLBUF_EN_3_ENABLED;
_regs.dblbuf_en_4 = lmx2572_regs_t::dblbuf_en_4_t::DBLBUF_EN_4_ENABLED;
_regs.dblbuf_en_5 = lmx2572_regs_t::dblbuf_en_5_t::DBLBUF_EN_5_ENABLED;
_regs.mash_rst_count_upper = 0;
_regs.mash_rst_count_lower = 0;
// Always gets set by set_frequency()
_regs.chdiv = lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2;
_regs.ramp_thresh_33rd = 0;
_regs.quick_recal_en = 0;
_regs.ramp_thresh_upper = 0;
_regs.ramp_thresh_lower = 0;
_regs.ramp_limit_high_33rd = 0;
_regs.ramp_limit_high_upper = 0;
_regs.ramp_limit_high_lower = 0;
_regs.ramp_limit_low_33rd = 0;
_regs.ramp_limit_low_upper = 0;
_regs.ramp_limit_low_lower = 0;
// Per the datasheet, the following fields need to be programmed to specific
// constants which differ from the defaults after a reset occurs
_regs.reg29_reserved0 = 0;
_regs.reg30_reserved0 = 0x18A6;
_regs.reg52_reserved0 = 0x421;
_regs.reg57_reserved0 = 0x20;
_regs.reg78_reserved0 = 1;
}
};
lmx2572_iface::sptr lmx2572_iface::make(lmx2572_iface::write_fn_t&& poke_fn,
lmx2572_iface::read_fn_t&& peek_fn,
lmx2572_iface::sleep_fn_t&& sleep_fn)
{
return std::make_shared<lmx2572_impl>(
std::move(poke_fn), std::move(peek_fn), std::move(sleep_fn));
}
|