1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
|
//
// Copyright 2018, 2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "lmx2592_regs.hpp"
#include <uhdlib/usrp/common/lmx2592.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <array>
#include <chrono>
#include <iomanip>
using namespace uhd;
namespace {
// clang-format off
// Some constexprs are unused, but kept for reference. In this case, we keep
// them as comments so compilers don't throw warnings.
//constexpr double LMX2592_DOUBLER_MAX_REF_FREQ = 60e6;
//constexpr double LMX2592_MAX_FREQ_PFD = 125e6;
constexpr double LMX2592_MIN_REF_FREQ = 5e6;
constexpr double LMX2592_MAX_REF_FREQ = 1400e6;
constexpr double LMX2592_MAX_OUT_FREQ = 9.8e9;
constexpr double LMX2592_MIN_OUT_FREQ = 20e6;
//constexpr double LMX2592_MIN_VCO_FREQ = 3.55e9;
constexpr double LMX2592_MAX_VCO_FREQ = 7.1e9;
constexpr double LMX2592_MAX_DOUBLER_INPUT_FREQ = 200e6;
constexpr double LMX2592_MAX_MULT_OUT_FREQ = 250e6;
constexpr double LMX2592_MAX_MULT_INPUT_FREQ = 70e6;
constexpr double LMX2592_MAX_POSTR_DIV_OUT_FREQ = 125e6;
constexpr double DEFAULT_LMX2592_SPUR_DODGING_THRESHOLD = 2e6; // Hz
constexpr int MAX_N_DIVIDER = 4095;
constexpr int MAX_MASH_ORDER = 4;
constexpr std::array<int, MAX_MASH_ORDER + 1> LMX2592_MIN_N_DIV = {
9, 11, 16, 18, 30
}; // includes int-N
constexpr int NUM_DIVIDERS = 14;
constexpr std::array<int, NUM_DIVIDERS> LMX2592_CHDIV_DIVIDERS = { 1, 2, 3, 4, 6, 8, 12,
16, 24, 32, 64, 96, 128, 192 };
const std::array<double, NUM_DIVIDERS> LMX2592_CHDIV_MIN_FREQ = {
3550e6, 1775e6, 1183.33e6, 887.5e6, 591.67e6, 443.75e6, 295.83e6,
221.88e6, 147.92e6, 110.94e6, 55.47e6, 36.98e6, 27.73e6, 20e6
};
// Unused, but kept for reference
//constexpr std::array<double, NUM_DIVIDERS> LMX2592_CHDIV_MAX_FREQ = {
//6000e6, 3550.0e6, 2366.67e6, 1775.00e6, 1183.33e6, 887.50e6, 591.67e6,
//443.75e6, 295.83e6, 221.88e6, 110.94e6, 73.96e6, 55.47e6, 36.98e6
//};
constexpr int NUM_CHDIV_STAGES = 3;
constexpr std::array<std::array<int, NUM_CHDIV_STAGES>, NUM_DIVIDERS> LMX2592_CHDIV_SEGS = {
{ { 1, 1, 1 },
{ 2, 1, 1 },
{ 3, 1, 1 },
{ 2, 2, 1 },
{ 3, 2, 1 },
{ 2, 4, 1 },
{ 2, 6, 1 },
{ 2, 8, 1 },
{ 3, 8, 1 },
{ 2, 8, 2 },
{ 2, 8, 4 },
{ 2, 8, 6 },
{ 2, 8, 8 },
{ 3, 8, 8 } }
};
constexpr int SPI_ADDR_SHIFT = 16;
constexpr int SPI_ADDR_MASK = 0x7f;
constexpr int SPI_READ_FLAG = 1 << 23;
// clang-format on
enum intermediate_frequency_t {
FVCO,
FLO,
FRF_IN,
};
const char* log_intermediate_frequency(intermediate_frequency_t inter)
{
switch (inter) {
case FRF_IN:
return "FRF_IN";
case FVCO:
return "FVCO";
case FLO:
return "FLO";
default:
return "???";
}
}
// simple comparator that uses absolute value
inline bool abs_less_than_compare(const double a, const double b)
{
return std::abs(a) < std::abs(b);
}
typedef std::pair<double, intermediate_frequency_t> offset_t;
// comparator that uses absolute value on the first value of an offset_t
inline bool offset_abs_less_than_compare(const offset_t a, const offset_t b)
{
return std::abs(a.first) < std::abs(b.first);
}
} // namespace
class lmx2592_impl : public lmx2592_iface
{
public:
explicit lmx2592_impl(write_spi_t write_fn, read_spi_t read_fn)
: _write_fn([write_fn](const uint8_t addr, const uint16_t data) {
const uint32_t spi_transaction =
0 | ((addr & SPI_ADDR_MASK) << SPI_ADDR_SHIFT) | data;
write_fn(spi_transaction);
})
, _read_fn([read_fn](const uint8_t addr) {
const uint32_t spi_transaction = SPI_READ_FLAG
| ((addr & SPI_ADDR_MASK) << SPI_ADDR_SHIFT);
return read_fn(spi_transaction);
})
, _regs()
, _rewrite_regs(true)
{
UHD_LOG_TRACE("LMX2592", "Initializing Synthesizer");
// Soft Reset
_regs.reset = 1;
UHD_LOG_TRACE("LMX2592", "Resetting LMX");
_write_fn(_regs.ADDR_R0, _regs.get_reg(_regs.ADDR_R0));
// The bit is cleared on the synth during the reset
_regs.reset = 0;
// Set register values where driver defaults differ from the datasheet values
_regs.acal_enable = 0;
_regs.fcal_enable = 0;
_regs.cal_clk_div = 0;
_regs.vco_idac_ovr = 1;
_regs.cp_idn = 12;
_regs.cp_iup = 12;
_regs.vco_idac = 350;
_regs.mash_ditherer = 1;
_regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_VCO;
_regs.fcal_fast = 1;
// Write default register values, ensures register copy is synchronized
_rewrite_regs = true;
commit();
_regs.fcal_enable = 1;
commit();
}
~lmx2592_impl() override
{
UHD_SAFE_CALL(_regs.powerdown = 1; commit();)
}
double set_frequency(const double target_freq,
const bool spur_dodging = false,
const double spur_dodging_threshold =
DEFAULT_LMX2592_SPUR_DODGING_THRESHOLD) override
{
// Enforce LMX frequency limits
if (target_freq < LMX2592_MIN_OUT_FREQ or target_freq > LMX2592_MAX_OUT_FREQ) {
throw runtime_error("Requested frequency is out of the supported range");
}
// Find the largest possible divider
auto output_divider_index = 0;
for (auto limit : LMX2592_CHDIV_MIN_FREQ) {
// The second harmonic level is very bad when using the div-by-3
// Skip and let the div-by-4 cover the range
if (LMX2592_CHDIV_DIVIDERS[output_divider_index] == 3) {
output_divider_index++;
continue;
}
if (target_freq < limit) {
output_divider_index++;
} else {
break;
}
}
const auto output_divider = LMX2592_CHDIV_DIVIDERS[output_divider_index];
_set_chdiv_values(output_divider_index);
// Setup input signal path and PLL loop
const int vco_multiplier = target_freq > LMX2592_MAX_VCO_FREQ ? 2 : 1;
const auto target_vco_freq = target_freq * output_divider;
const auto core_vco_freq = target_vco_freq / vco_multiplier;
double input_freq = _ref_freq;
// Input Doubler stage
if (input_freq <= LMX2592_MAX_DOUBLER_INPUT_FREQ) {
_regs.osc_doubler = 1;
input_freq *= 2;
} else {
_regs.osc_doubler = 0;
}
// Pre-R divider
_regs.pll_r_pre =
narrow_cast<uint16_t>(std::ceil(input_freq / LMX2592_MAX_MULT_INPUT_FREQ));
input_freq /= _regs.pll_r_pre;
// Multiplier
_regs.mult =
narrow_cast<uint8_t>(std::floor(LMX2592_MAX_MULT_OUT_FREQ / input_freq));
input_freq *= _regs.mult;
// Post R divider
_regs.pll_r =
narrow_cast<uint8_t>(std::ceil(input_freq / LMX2592_MAX_POSTR_DIV_OUT_FREQ));
// Default to divide by 2, will be increased later if N exceeds its limit
int prescaler = 2;
_regs.pll_n_pre = lmx2592_regs_t::pll_n_pre_t::PLL_N_PRE_DIVIDE_BY_2;
const int min_n_divider = LMX2592_MIN_N_DIV[_regs.mash_order];
double pfd_freq = input_freq / _regs.pll_r;
while (pfd_freq * (prescaler * min_n_divider) / vco_multiplier > core_vco_freq) {
_regs.pll_r++;
pfd_freq = input_freq / _regs.pll_r;
}
_set_fcal_adj_values(pfd_freq);
// Calculate N and frac
const auto N_dot_F = target_vco_freq / (pfd_freq * prescaler);
auto N = static_cast<uint16_t>(std::floor(N_dot_F));
if (N > MAX_N_DIVIDER) {
_regs.pll_n_pre = lmx2592_regs_t::pll_n_pre_t::PLL_N_PRE_DIVIDE_BY_4;
N /= 2;
}
const auto frac = N_dot_F - N;
// Increase VCO step size to threshold to avoid primary fractional spurs
const double min_vco_step_size = spur_dodging ? spur_dodging_threshold : 1;
// Calculate Fden
const auto initial_fden =
static_cast<uint32_t>(std::floor(pfd_freq * prescaler / min_vco_step_size));
const auto fden = (spur_dodging) ? _find_fden(initial_fden) : initial_fden;
// Calculate Fnum
const auto initial_fnum = static_cast<uint32_t>(std::round(frac * fden));
const auto fnum = (spur_dodging) ? _find_fnum(N,
initial_fnum,
fden,
prescaler,
pfd_freq,
output_divider,
spur_dodging_threshold)
: initial_fnum;
// Calculate mash_seed
// if spur_dodging is true, mash_seed is the first odd value less than fden
// else mash_seed is int(fden / 2);
const uint32_t mash_seed = (spur_dodging) ? _find_mash_seed(fden)
: static_cast<uint32_t>(fden / 2);
// Calculate actual Fcore_vco, Fvco, F_lo frequencies
const auto actual_fvco = pfd_freq * prescaler * (N + double(fnum) / double(fden));
const auto actual_fcore_vco = actual_fvco / vco_multiplier;
const auto actual_f_lo = actual_fcore_vco * vco_multiplier / output_divider;
// Write to registers
_regs.pll_n = N;
_regs.pll_num_lsb = narrow_cast<uint16_t>(fnum);
_regs.pll_num_msb = narrow_cast<uint16_t>(fnum >> 16);
_regs.pll_den_lsb = narrow_cast<uint16_t>(fden);
_regs.pll_den_msb = narrow_cast<uint16_t>(fden >> 16);
_regs.mash_seed_lsb = narrow_cast<uint16_t>(mash_seed);
_regs.mash_seed_msb = narrow_cast<uint16_t>(mash_seed >> 16);
UHD_LOGGER_TRACE("LMX2592") << "Tuned to " << actual_f_lo;
// Toggle fcal field to start calibration
_regs.fcal_enable = 0;
commit();
_regs.fcal_enable = 1;
commit();
return actual_f_lo;
}
void set_mash_order(const mash_order_t mash_order) override
{
if (mash_order == mash_order_t::INT_N) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_INT_MODE;
} else if (mash_order == mash_order_t::FIRST) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_FIRST;
} else if (mash_order == mash_order_t::SECOND) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_SECOND;
} else if (mash_order == mash_order_t::THIRD) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_THIRD;
} else if (mash_order == mash_order_t::FOURTH) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_FOURTH;
}
}
void set_reference_frequency(const double ref_freq) override
{
if (ref_freq < LMX2592_MIN_REF_FREQ or ref_freq > LMX2592_MAX_REF_FREQ) {
throw std::runtime_error(
"Reference frequency is out of bounds for the LMX2592");
}
_ref_freq = ref_freq;
}
void set_output_power(const output_t output, const unsigned int power) override
{
UHD_LOGGER_TRACE("LMX2592")
<< "Set output: " << (output == RF_OUTPUT_A ? "A" : "B") << " to power "
<< power;
const auto MAX_POWER = 63;
if (power > MAX_POWER) {
UHD_LOGGER_ERROR("LMX2592") << "Requested power level of " << power
<< " exceeds maximum of " << MAX_POWER;
return;
}
if (output == RF_OUTPUT_A) {
_regs.outa_power = power;
} else {
_regs.outb_power = power;
}
commit();
}
void set_output_enable(const output_t output, const bool enable) override
{
UHD_LOGGER_TRACE("LMX2592")
<< "Set output " << (output == RF_OUTPUT_A ? "A" : "B") << " to "
<< (enable ? "On" : "Off");
if (enable) {
_regs.chdiv_dist_pd = 0;
if (output == RF_OUTPUT_A) {
_regs.outa_pd = 0;
} else {
_regs.outb_pd = 0;
}
} else {
if (output == RF_OUTPUT_A) {
_regs.outa_pd = 1;
_regs.vco_dista_pd = 1;
_regs.chdiv_dista_en = 0;
} else {
_regs.outb_pd = 1;
_regs.vco_distb_pd = 1;
_regs.chdiv_distb_en = 0;
}
}
// If both channels are disabled
if (_regs.outa_pd == 1 and _regs.outb_pd == 1) {
_regs.chdiv_dist_pd = 1;
}
commit();
}
bool get_lock_status() override
{
// SPI MISO is being driven by lock detect
// If the PLL is locked we expect to read 0xFFFF from any read, else 0x0000
const auto value_read = _read_fn(_regs.ADDR_R0);
const auto lock_status = (value_read == 0xFFFF);
UHD_LOG_TRACE("LMX2592",
str(boost::format("Read Lock status: 0x%04X")
% static_cast<unsigned int>(value_read)));
return lock_status;
}
void commit() override
{
UHD_LOGGER_DEBUG("LMX2592")
<< "Storing register cache " << (_rewrite_regs ? "completely" : "selectively")
<< " to LMX via SPI...";
const auto changed_addrs = _rewrite_regs ? _regs.get_all_addrs()
: _regs.get_changed_addrs<size_t>();
for (const auto addr : changed_addrs) {
_write_fn(addr, _regs.get_reg(addr));
UHD_LOGGER_TRACE("LMX2592")
<< "Register " << std::setw(2) << static_cast<unsigned int>(addr)
<< ": 0x" << std::hex << std::uppercase << std::setw(4)
<< std::setfill('0') << static_cast<unsigned int>(_regs.get_reg(addr));
}
_regs.save_state();
UHD_LOG_DEBUG("LMX2592",
"Writing registers complete: "
"Updated "
<< changed_addrs.size() << " registers.");
_rewrite_regs = false;
}
private: // Members
//! Write functor: Take address / data pair, craft SPI transaction
using write_fn_t = std::function<void(uint8_t, uint16_t)>;
//! Read functor: Return value given address
using read_fn_t = std::function<uint16_t(uint8_t)>;
write_fn_t _write_fn;
read_fn_t _read_fn;
lmx2592_regs_t _regs;
bool _rewrite_regs;
double _ref_freq;
void _set_chdiv_values(const int output_divider_index)
{
// Configure divide segments and mux
const auto seg1 = LMX2592_CHDIV_SEGS[output_divider_index][0];
const auto seg2 = LMX2592_CHDIV_SEGS[output_divider_index][1];
const auto seg3 = LMX2592_CHDIV_SEGS[output_divider_index][2];
_regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_POWERDOWN;
if (seg1 > 1) {
_regs.chdiv_seg_sel =
lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1;
_regs.chdiv_seg1_en = 1;
_regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_DIVIDER;
_regs.outb_mux = lmx2592_regs_t::outb_mux_t::OUTB_MUX_DIVIDER;
_regs.vco_dista_pd = 1;
_regs.vco_distb_pd = 1;
_regs.chdiv_dist_pd = 0;
if (_regs.outa_pd == 0) {
_regs.chdiv_dista_en = 1;
}
if (_regs.outb_pd == 0) {
_regs.chdiv_distb_en = 1;
}
} else {
_regs.chdiv_seg1_en = 0;
_regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_VCO;
_regs.outb_mux = lmx2592_regs_t::outb_mux_t::OUTB_MUX_VCO;
_regs.chdiv_dist_pd = 1;
if (_regs.outa_pd == 0) {
_regs.vco_dista_pd = 0;
}
if (_regs.outb_pd == 0) {
_regs.vco_distb_pd = 0;
}
}
if (seg1 == 2) {
_regs.chdiv_seg1 = lmx2592_regs_t::chdiv_seg1_t::CHDIV_SEG1_DIVIDE_BY_2;
} else if (seg1 == 3) {
_regs.chdiv_seg1 = lmx2592_regs_t::chdiv_seg1_t::CHDIV_SEG1_DIVIDE_BY_3;
}
if (seg2 > 1) {
_regs.chdiv_seg2_en = 1;
_regs.chdiv_seg_sel =
lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1_AND_2;
} else {
_regs.chdiv_seg2_en = 0;
}
if (seg2 == 1) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_POWERDOWN;
} else if (seg2 == 2) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_2;
} else if (seg2 == 4) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_4;
} else if (seg2 == 6) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_6;
} else if (seg2 == 8) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_8;
}
if (seg3 > 1) {
_regs.chdiv_seg3_en = 1;
_regs.chdiv_seg_sel =
lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1_2_AND_3;
} else {
_regs.chdiv_seg3_en = 0;
}
if (seg3 == 1) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_POWERDOWN;
} else if (seg3 == 2) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_2;
} else if (seg3 == 4) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_4;
} else if (seg3 == 6) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_6;
} else if (seg3 == 8) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_8;
}
}
void _set_fcal_adj_values(const double pfd_freq)
{
// Adjust FCAL speed for particularly high or low PFD frequencies
if (pfd_freq < 5e6) {
_regs.fcal_lpfd_adj = lmx2592_regs_t::fcal_lpfd_adj_t::FCAL_LPFD_ADJ_5MHZ;
_regs.fcal_hpfd_adj = lmx2592_regs_t::fcal_hpfd_adj_t::FCAL_HPFD_ADJ_UNUSED;
_regs.pfd_ctl = lmx2592_regs_t::pfd_ctl_t::PFD_CTL_DUAL_PFD;
} else if (pfd_freq < 10e6) {
_regs.fcal_lpfd_adj = lmx2592_regs_t::fcal_lpfd_adj_t::FCAL_LPFD_ADJ_10MHZ;
_regs.fcal_hpfd_adj = lmx2592_regs_t::fcal_hpfd_adj_t::FCAL_HPFD_ADJ_UNUSED;
_regs.pfd_ctl = lmx2592_regs_t::pfd_ctl_t::PFD_CTL_DUAL_PFD;
} else if (pfd_freq < 20e6) {
_regs.fcal_lpfd_adj = lmx2592_regs_t::fcal_lpfd_adj_t::FCAL_LPFD_ADJ_20MHZ;
_regs.fcal_hpfd_adj = lmx2592_regs_t::fcal_hpfd_adj_t::FCAL_HPFD_ADJ_UNUSED;
_regs.pfd_ctl = lmx2592_regs_t::pfd_ctl_t::PFD_CTL_DUAL_PFD;
} else if (pfd_freq <= 100e6) {
_regs.fcal_lpfd_adj = lmx2592_regs_t::fcal_lpfd_adj_t::FCAL_LPFD_ADJ_UNUSED;
_regs.fcal_hpfd_adj = lmx2592_regs_t::fcal_hpfd_adj_t::FCAL_HPFD_ADJ_UNUSED;
_regs.pfd_ctl = lmx2592_regs_t::pfd_ctl_t::PFD_CTL_DUAL_PFD;
} else if (pfd_freq <= 150e6) {
_regs.fcal_lpfd_adj = lmx2592_regs_t::fcal_lpfd_adj_t::FCAL_LPFD_ADJ_UNUSED;
_regs.fcal_hpfd_adj = lmx2592_regs_t::fcal_hpfd_adj_t::FCAL_HPFD_ADJ_100MHZ;
_regs.pfd_ctl = lmx2592_regs_t::pfd_ctl_t::PFD_CTL_DUAL_PFD;
} else if (pfd_freq <= 200e6) {
_regs.fcal_lpfd_adj = lmx2592_regs_t::fcal_lpfd_adj_t::FCAL_LPFD_ADJ_UNUSED;
_regs.fcal_hpfd_adj = lmx2592_regs_t::fcal_hpfd_adj_t::FCAL_HPFD_ADJ_150MHZ;
_regs.pfd_ctl = lmx2592_regs_t::pfd_ctl_t::PFD_CTL_DUAL_PFD;
} else {
// Note, this case requires single-loop PFD which increases PLL noise floor
_regs.fcal_lpfd_adj = lmx2592_regs_t::fcal_lpfd_adj_t::FCAL_LPFD_ADJ_UNUSED;
_regs.fcal_hpfd_adj = lmx2592_regs_t::fcal_hpfd_adj_t::FCAL_HPFD_ADJ_200MHZ;
_regs.pfd_ctl = lmx2592_regs_t::pfd_ctl_t::PFD_CTL_SINGLE_PFD;
}
}
// "k" is a derived value that indicates where sub-fractional spurs will be present
// at a given Fden value. A "k" value of 1 indicates there will be no spurs.
// See the LMX2592 datasheet for more information
// Table 48 on pg. 30, Revision F (or search for "sub-fractional spurs")
int _get_k(const uint32_t fden) const
{
const auto mash = _regs.mash_order;
if (mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_INT_MODE
or mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_FIRST) {
return 1;
} else if (mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_SECOND) {
if (fden % 2 != 0) {
return 1;
} else {
return 2;
}
} else if (mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_THIRD) {
if (fden % 2 != 0 and fden % 3 != 0) {
return 1;
} else if (fden % 2 == 0 and fden % 3 != 0) {
return 2;
} else if (fden % 2 != 0 and fden % 3 == 0) {
return 3;
} else {
return 6;
}
} else if (mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_FOURTH) {
if (fden % 2 != 0 and fden % 3 != 0) {
return 1;
} else if (fden % 2 == 0 and fden % 3 != 0) {
return 3;
} else if (fden % 2 != 0 and fden % 3 == 0) {
return 4;
} else {
return 12;
}
}
UHD_THROW_INVALID_CODE_PATH();
}
// Find a value of fden such that "k" is 1 to avoid subfractional spurs
// See the _get_k function for more details on how k is calculated
uint32_t _find_fden(const uint32_t initial_fden) const
{
auto fden = initial_fden;
// mathematically, this loop should run a maximum of 4 times
// i.e. initial_fden = 6N + 4 and mash_order is third or fourth order
for (int i = 0; i < 4; ++i) {
if (_get_k(fden) == 1) {
UHD_LOGGER_TRACE("LMX2592")
<< "_find_fden(" << initial_fden << ") returned " << fden;
return fden;
}
// decrement rather than increment, as incrementing fden would decrease
// the step size and violate any minimum step size that has been set
--fden;
}
UHD_LOGGER_WARNING("LMX2592") << "Unable to find suitable fractional value "
"denominator for spur dodging on LMX2592";
UHD_LOGGER_ERROR("LMX2592") << "Spur dodging failed";
return initial_fden;
}
// returns the offset of the closest multiple of
// spur_frequency_base to target_frequency
// A negative offset indicates the closest multiple is at a lower frequency
double _get_closest_spur_offset(double target_frequency, double spur_frequency_base)
{
// find closest multiples of spur_frequency_base to target_frequency
const auto first_harmonic_number =
std::floor(target_frequency / spur_frequency_base);
const auto second_harmonic_number = first_harmonic_number + 1;
// calculate offsets
const auto first_spur_offset =
(first_harmonic_number * spur_frequency_base) - target_frequency;
const auto second_spur_offset =
(second_harmonic_number * spur_frequency_base) - target_frequency;
// select offset with smallest absolute value
return std::min({first_spur_offset, second_spur_offset}, abs_less_than_compare);
}
// returns the closest spur offset among 4 different spurs
// as well as which signal the spur is close to
// 1. PFD to Frf_in spur (Integer boundary)
// 2. PFD to Fvco spur
// 3. Reference to Fvco spur
// 4. Reference to Flo spur
// A negative offset indicates the closest spur is at a lower frequency
offset_t _get_min_offset_frequency(const uint16_t N,
const uint32_t fnum,
const uint32_t fden,
const int prescaler,
const double pfd_freq,
const int output_divider)
{
// Calculate intermediate values
const auto fref = _ref_freq;
const auto frf_in = pfd_freq * (N + double(fnum) / double(fden));
const auto fvco = frf_in * prescaler;
const auto flo = fvco / output_divider;
// the minimum offset is the smallest absolute value of these 4 values
// as calculated by the _get_closest_spur_offset function
// However, we also need to know which IF the spur is closest to
// in order to calculate the necessary frequency shift
// Integer Boundary:
const offset_t ib_spur = {_get_closest_spur_offset(frf_in, pfd_freq), FRF_IN};
// PFD Offset Spur:
const offset_t pfd_offset_spur = {_get_closest_spur_offset(fvco, pfd_freq), FVCO};
// Reference to Fvco Spur:
const offset_t fvco_spur = {_get_closest_spur_offset(fvco, fref), FVCO};
// Reference to F_lo Spur:
const offset_t flo_spur = {_get_closest_spur_offset(flo, fref), FLO};
// use min with special comparator for minimal absolute value
return std::min({ib_spur, pfd_offset_spur, fvco_spur, flo_spur},
offset_abs_less_than_compare);
}
// Find a suitable fnum such that _get_min_offset_frequency reports
// the closest spur is at least spur_dodging_threshold away.
// To see what spurs are considered, see _get_min_offset_frequency.
// This function uses a naive iterative approach, which could potentially
// fail for certain configurations. For example, it is assumed that the
// PFD frequency will be at least 10x larger than the step size of
// (fnum / fden). This function only considers at least 50% potential
// values of fnum, and does not consider changes to N.
uint32_t _find_fnum(const uint16_t N,
const uint32_t initial_fnum,
const uint32_t fden,
const int prescaler,
const double pfd_freq,
const int output_divider,
const double spur_dodging_threshold)
{
auto fnum = initial_fnum;
auto min_offset =
_get_min_offset_frequency(N, fnum, fden, prescaler, pfd_freq, output_divider);
UHD_LOGGER_TRACE("LMX2592") << "closest spur is at " << min_offset.first << " to "
<< log_intermediate_frequency(min_offset.second);
// shift away from the closest integer boundary i.e. towards 0.5
const double delta_fnum_sign = ((((double)fnum) / ((double)fden)) < 0.5) ? 1 : -1;
while (std::abs(min_offset.first) < spur_dodging_threshold) {
double shift = spur_dodging_threshold;
// if the spur is in the same direction as the desired shift direction...
if (std::signbit(min_offset.first) == std::signbit(delta_fnum_sign)) {
shift += std::abs(min_offset.first);
} else {
shift -= std::abs(min_offset.first);
}
// convert shift of IF value to shift of Frf_in
if (min_offset.second == FVCO) {
shift /= prescaler;
} else if (min_offset.second == FLO) {
shift /= prescaler;
shift *= output_divider;
}
double delta_fnum_value = std::ceil((shift / pfd_freq) * fden);
fnum += narrow_cast<int32_t>(delta_fnum_value * delta_fnum_sign);
UHD_LOGGER_TRACE("LMX2592")
<< "adjusting fnum by " << (delta_fnum_value * delta_fnum_sign);
// fnum is unsigned, so this also checks for underflow
if (fnum >= fden) {
UHD_LOGGER_WARNING("LMX2592")
<< "Unable to find suitable fractional value numerator for spur "
"dodging on LMX2592";
UHD_LOGGER_ERROR("LMX2592") << "Spur dodging failed";
return initial_fnum;
}
min_offset = _get_min_offset_frequency(
N, fnum, fden, prescaler, pfd_freq, output_divider);
UHD_LOGGER_TRACE("LMX2592")
<< "closest spur is at " << min_offset.first << " to "
<< log_intermediate_frequency(min_offset.second);
}
UHD_LOGGER_TRACE("LMX2592")
<< "_find_fnum(" << initial_fnum << ") returned " << fnum;
return fnum;
}
// if spur_dodging is true, mash_seed is the first odd value less than fden
static uint32_t _find_mash_seed(const uint32_t fden)
{
if (fden < 2) {
return 1;
} else {
return (fden - 2) | 0x1;
}
};
};
lmx2592_impl::sptr lmx2592_iface::make(write_spi_t write, read_spi_t read)
{
return std::make_shared<lmx2592_impl>(write, read);
}
|