1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2013-2014 Ettus Research LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Plots the output of the streamers that is produced when DEBUG_TXRX
is enabled.
"""
import argparse
import matplotlib.pyplot as plt
import numpy as np
# This is a top level function to load a debug file. It will return a list of lists with all the data.
def get_data(filename):
res = []
with open(filename) as f:
for line in f.readlines():
line = line.rstrip('\n')
s = line.split(',')
res.append(s)
res = fix_known_data_corruption_patterns(res)
return res
# Sometimes 'O' etc. get printed to stderr. This disturbs further processing. Thus, known pattern will be removed here.
def fix_known_data_corruption_patterns(data):
# Some lines might be corrupted in the way that e.g. UHD prints sth else in the same line.
# O, D, Press Enter... are known patterns. These should be fixed.
counts = {'O': 0, 'D': 0, 'exit_msg': 0}
for i in range(len(data)):
if data[i][0].startswith('O'):
counts['O'] += 1
data[i][0] = data[i][0].replace('O', '')
if data[i][0].startswith('D'):
counts['D'] += 1
data[i][0] = data[i][0].replace('D', '')
if data[i][0].startswith('Press Enter to quit: '):
counts['exit_msg'] += 1
data[i][0] = data[i][0].replace('Press Enter to quit: ', '')
print counts
return data
# Extract lines with a certain prefix.
def extract_lines(prefix, data):
res = []
for line in data:
if line[0] == prefix:
res.append(line[1:])
return res
# boolean values are stored as true/false. Convert them to real booleans again.
def convert_to_bool(data):
res = []
for d in data:
res.append(d == "true")
return res
# The different outputs have different structures. With this function you can conert them back to their actual type.
def convert_data_set(data, reqtype):
zdata = zip(*data)
res = []
if len(zdata) == 0:
return res
for i in range(len(reqtype)):
if reqtype[i] == np.bool:
res.append(np.asarray(convert_to_bool(zdata[i]), dtype=np.bool))
else:
res.append(np.asarray(zdata[i], dtype=reqtype[i]))
return res
# Wrapper for super_send_packet_handler data to be used with convert_data_set
def convert_super_send_packet_handler_data(data):
# wallclock, timeout, avail_samps, sent_samps, sob, eob, has_time_spec, time_spec (ticks)
reqtype = [np.uint64, np.float, np.int, np.int, np.bool, np.bool, np.bool, np.uint64]
cdata = convert_data_set(data, reqtype)
return cdata
# same o' same o'
def convert_super_recv_packet_handler_data(data):
# wallclock, timeout, requested_samps, received_samps, one_packet, error_code, sob, eob, more_fragments, fragment_offset, has_timespec, time_spec
reqtype = [np.uint64, np.float, np.int, np.int, np.bool, np.int, np.bool, np.bool, np.bool, np.int, np.bool, np.uint64]
cdata = convert_data_set(data, reqtype)
return cdata
def extract_super_recv_packet_handler_data(data):
pref1 = "super_recv_packet_handler"
pref2 = "recv"
super_recv = extract_lines(pref1, data)
recv = extract_lines(pref2, super_recv)
recv = convert_super_recv_packet_handler_data(recv)
return recv
# Sometimes TX or RX is interrupted by system jiffies. Those are found by this function.
def find_jiffy(data, thr):
res = []
last = data[0]
for i in range(len(data)):
if data[i] - last > thr:
res.append([last, data[i]])
last = data[i]
return res
# Get difference between tx and rx wallclock
def get_diff(tx, rx):
print "get diff, len(rx) = ", len(rx)
diff = [0] * len(rx[0])
for i in range(len(diff)):
r = rx[3][i]
idx = rx[0][i] - 1 # call count starts at 1. idx is 0 based.
t = tx[3][idx]
diff[i] = t - r
return diff
def bps(samps, time):
bp = []
last = time[0]-1000
for i in range(len(samps)):
td = time[i] - last
last = time[i]
td = td /1e6
bp.append(samps[i] * 4 / td)
return bp
# same as the other wrappers this time for libusb1
def extract_libusb(trx, data):
pr1 = "libusb1_zero_copy"
pr2 = "libusb_async_cb"
ldata = extract_lines(pr1, data)
edata = extract_lines(pr2, ldata)
d = extract_lines(trx, edata)
# buff_num, actual_length, status, end_time, start_time
reqtype = [np.int, np.int, np.int, np.uint64, np.uint64]
return convert_data_set(d, reqtype)
# Extract data for stream buffers. Typically there are 16 TX and 16 RX buffers. And there numbers are static. Though the number of buffers might be changed and the constant parameters must be adjusted in this case.
def extract_txrx(data):
tx = [[], [], [], [], []]
rx = [[], [], [], [], []]
for i in range(len(data[0])):
print data[0][i]
if data[0][i] > 31 and data[0][i] < 48:
rx[0].append(data[0][i])
rx[1].append(data[1][i])
rx[2].append(data[2][i])
rx[3].append(data[3][i])
rx[4].append(data[4][i])
#print "tx\t", data[0][i], "\t", data[3][i], "\t", data[4][i]
if data[0][i] > 47 and data[0][i] < 64:
tx[0].append(data[0][i])
tx[1].append(data[1][i])
tx[2].append(data[2][i])
tx[3].append(data[3][i])
tx[4].append(data[4][i])
#print "rx\t", data[0][i], "\t", data[3][i], "\t", data[4][i]
return [tx, rx]
# Calculate momentary throughput
def throughput(data):
start = data[2][0]
total = data[1][-1] - data[2][0]
print total
thr = np.zeros(total)
for i in range(len(data[0])):
s = data[2][i] - start
f = data[1][i] - start
ticks = data[1][i] - data[2][i]
pertick = 1. * data[0][i] / ticks
vals = [pertick] * ticks
thr[s:f] = np.add(thr[s:f], vals)
#print pertick
print np.shape(thr)
return thr
# Calculate a moving average
def ma(data, wl):
ap = np.zeros(wl)
data = np.concatenate((ap, data, ap))
print np.shape(data)
res = np.zeros(len(data)-wl)
for i in range(len(data)-wl):
av = np.sum(data[i:i+wl]) / wl
res[i] = av
print i, "\t", av
return res
def get_x_axis(stamps):
scale = 10e-6
return np.multiply(stamps, scale)
# plot status codes.
def plot_status_codes_over_time(data, fignum):
print "printing status numbers over time"
# extract and convert the data
recv = extract_super_recv_packet_handler_data(data)
libusb_rx = extract_libusb("rx", data)
libusb_tx = extract_libusb("tx", data)
# Plot all data
plt.figure(fignum) # Make sure these plots are printed to a new figure.
#plt.plot(get_x_axis(libusb_rx[3]), libusb_rx[2], marker='x', label='RX')
#plt.plot(get_x_axis(libusb_tx[3]), libusb_tx[2], marker='x', label='TX')
pos = 5
recv_error_codes = recv[pos]
plt.plot(get_x_axis(recv[0]), recv_error_codes, marker='x', label='recv')
plt.title("Status codes over timestamps")
plt.ylabel("status codes")
plt.xlabel("timestamps")
plt.grid()
plt.legend()
for i in range(len(recv[0])):
if recv[pos][i] == 8:
xaxis = get_x_axis([recv[0][i]])
plt.axvline(xaxis, color='b')
# Get some statistics and print them too
codes = []
code_dict = {}
for i in range(len(recv_error_codes)):
if recv_error_codes[i] != 0:
code = rx_metadata_error_codes[recv_error_codes[i]]
pair = [i, code]
codes.append(pair)
if not code_dict.has_key(code):
code_dict[code] = 0
code_dict[code] += 1
print codes
print code_dict
# plot rtt times as peaks. That's the fast and easy way.
def plot_rtt_times(data, fignum):
print "plot RTT times"
rx = extract_libusb("rx", data)
tx = extract_libusb("tx", data)
scale = 10e-6
rx_diff = np.multiply(np.subtract(rx[3], rx[4]), scale)
tx_diff = np.multiply(np.subtract(tx[3], tx[4]), scale)
plt.figure(fignum)
plt.plot(get_x_axis(rx[3]), rx_diff, marker='x', ls='', label="rx RTT")
plt.plot(get_x_axis(tx[3]), tx_diff, marker='x', ls='', label="tx RTT")
plt.title("Round trip times")
plt.ylabel("RTT (us)")
plt.grid()
plt.legend()
# plot RTT as actual lines as long as buffers are on the fly.
# This can take a long time if the function has to print a lot of small lines. Careful with this!
def plot_rtt_lines(data, fignum):
print "plot RTT lines"
rx = extract_libusb("rx", data)
#tx = extract_libusb("tx", data)
if len(data) == 0 or len(rx) == 0:
return
plt.figure(fignum)
for i in range(len(rx[0])):
if rx[0][i] > -1:
start = rx[4][i]
stop = rx[3][i]
status = rx[2][i]
val = rx[0][i]#(stop - start) * scale
if not status == 0:
if status == 2:
print "status = ", status
val +=0.5
xaxis = get_x_axis([start, stop])
plt.plot(xaxis, [val, val], marker='x')
plt.ylabel('buffer number')
# Careful with these lines here.
# Basically they should always have these values to separate CTRL, TX, RX buffer number blocks.
# But these values can be adjusted. Thus, it requires you to adjust these lines
plt.axhline(15.5)
plt.axhline(31.5)
plt.axhline(47.5)
plt.grid()
# only plot on-the-fly buffers.
def plot_buff_otf(trx, nrange, data):
d = extract_libusb(trx, data)
res = [[], []]
num = 0
for i in range(len(d[0])):
if d[0][i] in nrange:
res
# If there are still unknown lines after cleanup, they can be caught and printed here.
# This way you can check what got caught but shouldn't have been caught.
def get_unknown_lines(data):
# These are the 3 known starting lines. More might be added in the future.
known = ['super_recv_packet_handler', 'super_send_packet_handler', 'libusb1_zero_copy']
res = []
for i in range(len(data)):
if not data[i][0] in known:
print data[i]
res.append(data[i])
return res
# LUT for all the return codes
rx_metadata_error_codes = {0x0: "NONE", 0x1: "TIMEOUT", 0x2: "LATE_COMMAND", 0x4: "BROKEN_CHAIN", 0x8: "OVERFLOW",
0xc: "ALIGNMENT", 0xf: "BAD_PACKET"}
def parse_args():
""" Parse args, yo """
parser = argparse.ArgumentParser(description='Plot tool for debug prints.')
parser.add_argument('-f', '--filename', default=None, help='Debug output file')
return parser.parse_args()
# Be really careful with the input files. They get pretty huge in a small time.
# Doing some of the plotting can eat up a lot of time then.
# Although this file contains a lot of functions by now, it is still left to the user to use everythin correctly.
def main():
args = parse_args()
filename = args.filename
print "get data from: ", filename
#pref1 = "super_recv_packet_handler"
#pref2 = "recv"
# Here you get the data from a file
data = get_data(filename)
#print "data len: ", len(data)
# extract lines with unknown content.
unknown = get_unknown_lines(data)
# plot status codes and RTT lines.
plot_status_codes_over_time(data, 0)
plot_rtt_lines(data, 0)
#plot_rtt_times(data, 0)
#[tx, rx] = extract_txrx(data)
#print "txlen\t", len(tx[0])
#print "rxlen\t", len(rx[0])
#print "plot data"
#plt.title(filename)
#plt.plot(tx_data[0], tx_data[7], 'r', marker='o', label='TX')
#plt.plot(rx_data[0], rx_data[11], 'g', marker='x', label='RX')
#for j in jiffies:
# plt.axvline(x=j[0], color='r')
# plt.axvline(x=j[1], color='g')
#
#plt.xlabel('wallclock (us)')
#plt.ylabel('timestamp (ticks)')
#plt.legend()
#lencal = 200000
# calculate and plot rx throughput
#rxthr = throughput([rx[1], rx[3], rx[4]])
#plt.plot(rxthr[0:lencal])
#rxav = ma(rxthr[0:lencal], 2000)
#plt.plot(rxav)
# calculate and plot tx throughput
#txthr = throughput([tx[1], tx[3], tx[4]])
#plt.plot(txthr[0:lencal])
#txav = ma(txthr[0:lencal], 20)
#plt.plot(txav)
#bp = bps(data[1], data[2])
#print np.sum(bp)
#ave = np.sum(bp)/len(bp)
#print ave
#plt.plot(tx_data[0], tx_data[2], 'r')
#plt.plot(rx_data[0], rx_data[2], 'b')
#plt.plot(bp, 'g', marker='+')
#plt.plot(np.multiply(data[1], 1e6), 'r', marker='o')
#plt.plot(np.multiply(data[3],1e2), 'b', marker='x')
#plt.plot(ave)
# in the end, put a grid on the graph and show it.
plt.grid()
plt.show()
if __name__ == '__main__':
print "[WARNING] This tool is in alpha status. Only use if you know what you're doing!"
main()
|